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Abstract

In social science research, it is common to observe multivariate time series 

data where the outcomes are binary. The classical approach is to fit a categorical 

response regression model. However, the application of these static regression models 

often impose unrealistic assumptions that a single simple model adequately repre­

sents a particular series at all possible times. These inappropriate static regressions 

are applied to the observed time series data in order to estimate what are really dy­

namic effects. In this thesis, a class of multivariate dynamic generalized linear models 

(MDGLM) is introduced and a Bayesian approach is developed.

This Bayesian approach extends the Gibbs sampling framework for dynamic 

generalized linear models by introducing more general Markov chain methods. This 

thesis outlines several basic Markov chain Monte Carlo methods, including Metropolis- 

Hastings algorithms, adaptive rejection sampling (ARS) algorithms and other varia­

tions. In addition, a modified ARS algorithm is derived for efficiently sampling from 

log-concave distributions. The methods are applied to analyzing two Minnesota In­

novation Research Program (MIRP) studies, a research program on the management 

of innovation at the University of Minnesota Strategic Management Research Center.
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Chapter 1 

Introduction

1.1 M otivation

In social science research, it is common to observe multivariate time series data where 

the outcomes are binary. The purposes of analyzing such data include assessing the 

association among variables, identifying lead-lag relationships among variables, and 

regressing one outcome on others as well as on fixed covariates. One example is from 

the Minnesota Innovation Research Program (MIRP). MIRP is a five-year (1983-1987) 

research program on the management of innovation. Since 1983. researchers at the 

University of Minnesota have been engaged in a longitudinal field research program 

with the objective of developing and testing the process theory of innovation which 

explains how and why innovation develops over time and what developmental paths 

may lead to success and failure for different kinds of innovations (Van de \  en and 

Associates, 1988). Fourteen related studies of a wide variety of innovations were 

undertaken by different research teams. Recognizing the limited research and theory 

on innovation processes in the literature, MIRP researchers decided that it might be 

more productive to undertake a grounded-theorv strategy (Glaser and Strauss. 1967). 

In essence, the grounded-theory strategy is to discover a process theory of innovation 

from data systematically obtained from longitudinal research, then to test existing 

theories that were logically deduced from a priori assumptions which often do not fit 

or are not based on concrete particulars of the phenomena to be explained.

1
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Two studies have made significant contributions to identifying and explain­

ing process patterns in the development of innovation over time. They are the co­

evolution model of technological and institutional innovations and the trial-and-error 

adaptive learning model. The co-evolution model presents a social evolutionary the­

ory of change for explaining how technological and institutional innovations emerge 

as a continuous process of variation, selection, and retention events (Van de Yen and 

Garud, 1992). The learning model focuses on relationships between the action and 

outcome events of an innovation team within the joint venture as it develops the 

innovation over time, and on the influence environmental events have on the learning 

process (Van de Ven and Polley, 1992).

Observing the presence or absence of events of the variables in these two mod­

els, a time series analysis (Van de Ven and Garud, 1992; Van de Ven and Polley. 

1992) was undertaken to estimate the relationships among the variables in the hy­

pothesized models. To apply standard time series analysis methods it was necessary 

to aggregate the binary event sequence data into fixed temporal intervals. Given the 

absence of prior research on temporal intervals for events, Van de Ven and Garud 

(1992) and Van de Ven and Polley (1992) experimented with weekly, monthly, quar­

terly, and semiannual intervals. A monthly interval was chosen for aggregating events 

for both models because it provided the most substantively meaningful interpretation 

of the time series graphs and correlations among the variables. The results from the 

time series regression analyses provide substantial support for the hypotheses of the 

co-evolution model that variation, selection, and retention events endogenously co­

produce each other over time, but contradict the other hypothesis of the co-evolution 

model that there is a significant self-reinforcing loop between variation and retention 

events. Also, the test results clearly contradict the learning model during an initial 

expansion period, but strongly support the model during a subsequent contraction 

period.
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These empirical findings quite clearly contradict parts of the hypothesized 

models. Explanations for why these different patterns of innovation occurred over 

time and a further qualitative analysis of these historical innovation developments 

was provided by Van de Ven and Garud (1992) and Van de Ven and Polley (1992). 

Cheng and Van de Ven (1996) applied chaos theory to the contradictor.' part of these 

two innovation models to give another possible answer.

Both these qualitative analyses as well as chaos theory try to give an expla­

nation to each model based on the monthly interval aggregation data. However, in 

some cases aggregation may diminish the direct relationships among the variables. 

Therefore, it is useful to re-examine the models just using the raw binary event series 

rather than aggregating events to monthly intervals. To analyze these hypothesized 

models using the binary event series would take each event into account and might 

detect the relationships more efficiently. In this dissertation, we will follow Van de 

Ven and Garud (1992) and Van de Ven and Polley (1992) and develop methodology- 

that can be used to further investigate the hypothesized models by using the raw 

binary event series.

1.2 M odels for Binary Time Series

In the literature, univariate binary time series have been studied in detail (Kedem 

1980; Keenan 1982). Models for independent multivariate binary data are also well 

developed; Cox (1972) provides a review. Fewer methods are available for multivariate 

binary time series, unlike multivariate models for Gaussian outcomes, which have been 

studied in detail (e.g., Tiao and Box, 1981).

For multivariate binary time series, we are concerned with the construction of 

models for the analysis of sequences of binary data which may be serially correlated. 

Logistic regression models are commonly used (Cox, 1970) to study the relationship
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between binary responses and a set of covariates. For example, a class of conditional 

logistic regression models for clustered binary data is considered in Connolly and 

Liang (1988); a logistic model for the conditional distributions of each series given 

the others for multivariate binary time series is proposed by Liang and Zeger (1989). 

However, the applications of these static regression models often impose unrealis­

tic assumptions when applied to evolutionary processes during the development of 

technological innovation. In developing a process theory of innovation, the changing 

structural and technological conditions, individual behavior, and attitude may cause 

uncertainty to the hypothesized model of the process theory. This dynamic nature 

of processes and systems demands that we recognize uncertainty due to the passage 

of time. Further it might be recognized that, at some future time, the whole model 

or system form may change. Thus, it is necessary to consider the parameters in the 

hypothesized model as changing with time.

West, Harrison, and Migon (1985) defined the class of dynamic generalized 

linear models (DGLM) and developed a Bayesian approach to dynamic modeling and 

forecasting. In the standard dynamic generalized linear models form, univariate ob­

servations yt are related to an unobservable time-varying parameter vector f3t by a 

linear observation equation E{yt\/3ti - ,y t -1) =  h(zt/3t ), where h is one of the 

common link functions, z t is a function of covariates and, possibly, past responses, 

together with a linear evolution equation (3t =  Ft0 t- i  +  with a Gaussian noise 

process £t. For binary responses, such as the MIRP data, the time-varying param­

eters (3t relate to the response probabilities irt as specified by ~t = h(z't/3t ). Two 

basic models are commonly used to analyze binary responses: the logit model with h 

the logistic distribution function, and the probit model with h the standard normal 

cumulative distribution function. The model has three features:
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1. The process yt is assumed to have a sampling distribution in the exponen­

tial family. This class of models includes sampling distributions that may be 

non-normal or not likely to be adequately modeled using normality, even after 

transformation.

2. The natural parameter of the sampling distribution is related to the unobserved 

parameter /3t through a link function. This link function provides a transfor­

mation from the natural parameter space to that of the linear predictor.

3. A linear (or nonlinear) Gaussian evolution model for the parameter (3t . These 

time varying parameters allow one to include change over time into the model.

This Bayesian approach is built on existing practice in the sense that many common 

models can formulate and provide alternatives to the standard static regression model 

that do not suffer its drawbacks. It also has several advantages required for operat­

ing with little data, accommodating subjective information, on-line monitoring, and 

estimation of parameters.

Given the observations yi, . . . .  yr, estimation of {3t is a primary goal of infer­

ence. West, Harrison, and Migon (1985) discuss Bayesian inference and data analysis 

for the univariate dynamic generalized linear model. A key feature of the analysis 

is the use of conjugate prior and posterior distributions for the exponential family 

parameters and a derivation of an approximate filter for estimation of time-varying 

parameters. Unfortunately these methods are difficult to extend to the multivari­

ate case; See Fahrmeir (1992) and Fahrmeir and Tutz (1994) for further discussion. 

Therefore, different estimation methods for multivariate dynamic generalized linear 

models need to be considered. There are three approaches: a full Bayesian analy­

ses based on numerical integration (e.g., Kitagawa, 1987), posterior mode estimation 

(Fahrmeir, 1992), and Gibbs sampling (e.g., Carlin, Poison, and Stoffer. 1992). We 

will review and summarize these estimation methods in Chapter 2.
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1.3 Objectives and Thesis Outline

A full Bayesian analysis based on posterior distributions for multivariate binary time 

series will generally require repeated multidimensional integrations. As an alterna­

tive, Monte Carlo techniques are particularly useful for problems in connection with 

Bayesian inference and can be applied in our situation. For statistical inference, it 

is necessary to draw a large number of samples from the posterior densities. In gen­

eral, direct random drawings from the posterior densities are not available. Our main 

purpose in this dissertation is to develop several sampling procedures for dynamic 

multivariate binary time series models, to compare them to the known methods, and 

to apply them to the MIRP example. The rest of the thesis is organized as follows.

In Chapter 2, we briefly review multivariate dynamic generalized linear models. 

Three approaches to statistical inference based on posterior densities are introduced.

In addition to these three approaches, Markov chain Monte Carlo (MCMC) 

methods have been widely used in Bayesian inference problems. We outline a number 

of the basic Markov chain Monte Carlo samplers that are available for statistical 

inference in multivariate dynamic generalized linear models in Chapter 3.

In Chapter 4, we propose a method for rejection sampling that is useful for 

Gibbs sampling for multivariate dynamic generalized models. We also discuss issues 

related to the choice of the candidate generating densities and block sampling strate­

gies when applying Markov chain Monte Carlo algorithms. Two link functions that 

are approximately equivalent to the logistic link function are introduced.

In Chapter 5, we apply the MCMC algorithms introduced in the Chapter 4 

and empirically compare them with posterior mode estimates of the extended Kalman 

filter and smoother (EKFS) on a binary rainfall time series example. Some issues that 

arise in the implementation of MCMC algorithms are discussed. The comparisons of 

different MCMC algorithms are made based on runs of 50,000 observations.
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In Chapter 6. we re-analyze the two studies of MIRP data using some of 

the methodology developed in this thesis. This analysis based on binary time series 

provides different views of the hypothesized models.

Finally, Chapter 7 provides a discussion of the results and gives directions for 

further research.
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Chapter 2

Literature Review

As a basis, this chapter gives a short review of multivariate dynamic generalized lin­

ear models (MDGLM). Three estimation approaches of statistical inference for the 

MDGLM in the literature will be introduced. More detailed expositions can be found, 

for example, in West, Harrison, and Migon (1985), Kitagawa (1987). West and Har­

rison (1989), Goss (1990), Friihwirth-Schnatter (1991), Schnatter (1992). Fahrmeir 

(1992), Lindsey (1993), and Fahrmeir and Tutz (1994).

2.1 M DGLM

To establish notation, let responses, covariates, and parameters up to t be denoted 

by

vt* = (vi,• • • >yj)\ = (*'r ... ,*[)', 0t = (#>••••

where y^, acj are empty and y t and /3t have dimension q and p respectively.

The conditional density p{yt\Pt,yi_v x*) *s assumed to be of ^-dimensional 

exponential family type with conditional mean

E{yt \0t, V t - v  x t) =IH = h{Z'tp t ), t = 1,2, . . .  ,

where h: R r —> R9 is a two-times continuously differentiable link function, and Z t is 

a p x r matrix depending on covariates and, possibly, on past responses y *_: .

8
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For parameter transitions, we use a linear Gaussian evolution model:

fit =  F tfit- i  + t =  1. 2. . . . .  (2.1)

The error process £t is Gaussian noise, ~  N(0,Qt) with independent of £t- i-  

■ ■ ■ > Co, 2/t_x, for t > 1 and of fi0 ~  N{a0,Q0).

In the simplest form, the system matrices Z*, Ft , Q t . ao, and Q0 are assumed 

to be deterministic and known. In many applications, however, the covariance matrix 

Qt, the initial values ao and Q o are unknown. One can assume these Q t. a 0. and 

Qo, contain hyperparameters, say a ,  so that

Qt — Qt(&)'. a0 =  a0(a), and Qo =  Qo(oi).

We treat the hyperparameters a  as unknown constants. Under the normality as­

sumption, maximum likelihood is then a natural choice for estimation (Fahrmeir and 

Tutz, 1994). Other estimation procedures have been proposed, such as the EM algo­

rithm (Goss, 1990), generalized least squares (Aoki, 1987; Harvey. 1989). and Bayes 

methods where a  is treated as a stochastic parameter with a prior distribution.

2.2 Statistical Inference for the MDGLM

When a model can be written in MDGLM form this provides the key for employing 

unified methods of statistical inference. Given the observations y t . . . . ,  yT. estimation 

of fit is the primary goal. This is termed filtering for t = T, smoothing for t < T. and 

prediction for t > T. Three approaches for estimating fit have already been mentioned 

briefly in Section 1.2: a full Bayes analyses based on numerical integration, posterior 

mode estimation, and Gibbs sampler methods.
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2.2.1 Integration-Based Approaches

The integration-based approach was presented by Kitagawa (1987). In the method 

described there, recursive formulas for filtering and smoothing were derived and they 

were implemented using numerical computations. A problem with this numerical 

method is that it requires intensive use of the computer. Due to its complexity and 

numerical effort it is difficult to apply to models when the dimension of the parameter 

vector (3t is large. Considerable work has been done on the refinement of the numerical 

algorithm for low dimensional modeling of the parameter vector 0 t. For example. 

Hodges and Hale (1993) used a computationally more efficient integration algorithm 

and Tanizaki (1993) used a Monte Carlo random placement of knots method.

A similar approach was proposed by West and Harrison (1989). They suggest 

the application of Gauss-Hermite quadrature to solve the analytically intractable inte­

grals in the conditional first two moments. However, due to the recursive dependence 

of the integrals in posterior densities over time, the numerical effort of their approach 

increases exponentially with time. Therefore, the method is mainly restricted to 

shorter time series.

A more practicable solution to the prediction and filtering problem in dy­

namic generalized linear models with linear Gaussian evolution models has been given 

by Schnatter (1992) and Fruhwirth-Schnatter (1991). Schnatter (1992) also gives a 

simulation-based comparison of approximate filtered posterior means obtained by 

Gauss-Hermite quadrature and approximate filtered posterior modes obtained by the 

generalized extended Kalman filter. Their results show that the estimated posterior 

moments are often nearly identical after a few filtering steps.
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2.2.2 Posterior Mode Estimation

To avoid numerical integration, which can become infeasible for higher dimensions, 

one way to estimate (3t is by posterior modes; that is, by maximization of posterior 

densities. Numerical maximization of posterior densities can be achieved by various 

algorithms. Fahrmeir and Kaufmann (1991) develop interative forward-backward 

Gauss-Newton (Fisher-Scoring) algorithms. Fahrmeir (1992) suggests the generalized 

extended Kalman filter and smoother as an approximate posterior mode estimator in 

dynamic generalized linear models, and shows that the EKFS can be considered as 

a simplified Fisher scoring algorithm. In their experience, it is a good compromise 

between computational simplicity and numerical accuracy for estimation in commonly 

used models (e.g., logit or probit models).

Given the data y* and a;*, estimation of /3* is based on the posterior density 

p(/3*|y*,x*). Repeated application of Bayes’ theorem yields

p(/3* |y*, x * ) =  n L  PiVtlPt, Vt- r  x l) nf= i P(Pt\PUv V t - i - x *t)

x[IL=i P(.x t\@t—\' Pt-1' x t—\)Ip^Pt ' x t )\p (@q}•

This can be simplified if the following assumptions hold:

(Al). Conditional on (3t and (yj_1;x*), current observations y t are independent of 

# _ ! ,  i.e.,

p(yt \Pt , y l- f -  x l)  =  p(yt\Pt, y*t_ v  x*t ), t =  i , 2 , . . .

(A2). Conditional on yt*_15 x*_x, covariates x t are independent of Pl_x, i.e..

p{xt\PUv  yt*_15 x ;_ x) = p(ait |y*_1, x*_J, « =  1, 2—
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(A3). The parameter process is Markovian, i.e..

=  p (0 t \0 t - ih  t =  1 ,2 . . . .

Under assumptions (Al), (A2), and (A3), we obtain

T T

P i P r l y h  x t )  x  I I p ( M I A .  y r - x . * r )  n P C A I A - O p C A ) .  (2-2) 
£=1 £=1

To avoid numerical integration, Fahrmeir (1992) proposes to estimate /3* by posterior 

modes; that is, by maximization of posterior densities.

The EKFS algorithm can be derived in a straightforward but lengthy way as 

an approximate posterior mode estimator by extending Sage and Melsa's (1971) ar­

guments for maximum posterior estimation in nonlinear systems from conditionally 

Gaussian to exponential family observations. The same result can also be obtained 

by using Hartigan’s (1969) Unear Bayes arguments or by linearizing the observation 

equation around the current estimates. The following additional notation will be of 

use: Stressing dependence on /3t , we write /rt (/3t) =  h{Z't(3t) =  E (yt |/3t .y*_1.x*) for 

the conditional expectation, St(/3*) =  V'(yt|/3t,y*_i,x*) for the conditional covari­

ance matrix, inserting UtiPt) in the variance function of the exponential family, and 

Z t is a function depending on past responses t/jT^ and on present and past covariates 

x*. In the following, prediction, filter, and smoother steps 0t\t, 0t\T- denote

the posterior mode estimators and Vqt, Vf-i|T are estimated error covariance

matrices.
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Extended Kalman Filter and Smoother (E K F S ) :

1. Prediction step 

For t =  1,  T:

@t\t—i =  Ft0 t - i \ t - i ,  /3o|o =  o, o,

Vtjt-i =  FtVt-i\t~iFt +  Q t , Vo|o =  Qo-

2. Filter step

For t =  1, . . . ,  T:

0t\t =  fit\t-i +  K t[yt — h(Zt$ t\t-i)\,

Vt\t =  ( /  -  K tZ tD t )Vt\t-i, 

where K t =  Vt]t. 1Z ,tD t[Z'tD tVnt. 1D tZ ,t + E t] - \
n    dh

4 d(Z Ft/3ty 

and fit , D t . are evaluated at 0t\t-i-

3. Smoother step 

For s = T, . . . .  1:

0a-  1|T =  08-l\a-l  +  Bg((3a\T ~ 0a\a-\),

V«-1|T =  Va-l|a-l +  B s(Va\T ~ Va\s- i ) B a, 

where B a =

For the situation where the evolution model contains unknown hyperparam­

eters a ,  Fahrmeir (1992) suggests an indirect approach, using a variant of the EM 

algorithm and substituting posterior modes for posterior expectations. In this con­

text, the complete data set consists of y I  and (3*. In its original version, the EM 

algorithm computes the next iterate a^fc+1\  given the current iterate <Mfc) by maxi­

mizing the conditional expectation £[lnp(y*,/3*|a;*,a:(fc))] of the joint log density of
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y*. /3* with respect to a .  However, exact computation of this conditional expec­

tation would require a large number of p-dimensional integrations. Fahrmeir (1992) 

suggests that posterior expectations and covariance matrices be replaced by corre­

sponding posterior modes 0 ^ .  and error covariance matrices obtained by the 

EKFS above, with the hyperparameters a. set to aSk\  Proceeding in this way. one 

obtains an EM type algorithm, where the M step can be carried out analytically in 

many situations of practical interest.

For estimating hyperparameters, Fahrmeir and Goss (1992) consider the case 

of a univariate dynamic generalized linear model (2.1), with unknown vector of hy­

perparameters a  =  (oo, Qo> Q)j be. Q t =  Q, Qt is independent of t. The algorithm 

requires that initial values ao. Qq, and Q  of the evolution model are known or given. 

The resulting iterative algorithm jointly estimates f3t \T• Vt\T- and a. as follows:

1. Choose starting values a 0. Qo: Q- Iterate the following steps 2 and 3 for k = 

0 , 1, 2 , . . .

2. Smoothing: compute , t =  1, . . . ,  T. by EKFS algorithm with un­

known parameters replaced by their current estimates aQk\  Qok\  Q (fc).

3. EM step: Compute 4 fc+1), Q (0k+1\  Q (fc+1> by

a o — rio(T’ Wo — ‘'oir ■

Q (k+1) =  Y  -  S i-’iirXA'Sr -  +  Vt(‘ >|T -  2V,<‘ >i1|t|.
t=l

v ,% tT  =  v , . 1 |(_ 1 v ; j ; i 1 v , |T .

4. Stop when some termination criterion is reached.

As is common with EM-type algorithms, convergence cannot be assured generally
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and can be slow. More details, in particular concerning derivations, implementation 

and performance, can be found in Goss (1990).

2.2.3 The Gibbs Sampler

Gibbs sampling is a Markov chain Monte Carlo technique for obtaining posterior den­

sities in cases where traditional numerical integration techniques become infeasible. 

A Gibbs sampling approach to dynamic models with normal mixture error structure 

has been proposed by Carlin, Poison, and Stoffer (1992). Fahrmeir. Hennevogl and 

Klemme (1992) and Knorr-Held (1993) adapted their approach to dynamic general­

ized linear models with linear Gaussian evolution models. To obtain estimates for the 

marginal posterior densities p((.3t|y£) by Gibbs sampling, it is required that condi­

tional posterior densities p(/3t|/3«^t,!/y) of /3t given all other parameters /3S. .s 7= t. bo 

available for sampling. That means it has to be possible to draw random observations 

from these conditional densities. By definition, we have

=  ^ T' y« -V  (2'3)P{Pa^t,yT)

Repeated application of the model assumptions (Al), (A2 ), and (A3) yields

r  t

P i P h  V t ) =  P ( P o) J Jp (A IA -i)  JJp(yt|/3t, y*_j).
i=l t=l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER 2. LITERATURE REVIEW 16

Proceeding similarly for the denominator in (2.3), one obtains

p(Pt+i\Pt)p(Pt)
p($t+i) '

=  p(yt\0t,yt-i)p(0t+i\Pt)P(PtiPt-i) 
p m P t - i v ^ P iP t + i P t - i )

p(yt\Pt,ytr l M0t\Pt-i) 
p i y t \P t - i , y l _ t ) 1

if t =  0

if t =  i . . . . .  r  — i

if t =  T.

C2.4)

Since the denominators in (2.4) do not depend on p t , the following proportionality 

holds:

Ip(Pt+i\Pt)p(Pt), i i t  = 0

p{Pt\Pa*t,yT)  oc < p(yt\Pt,yt-i)p(Pt+i\Pt)p{Pt\Pt-i), if t =  l . .

k p{yt\Pt,y*t_x)p{Pt\Pt-\), if t =  T.

T  -  1

(2.5)

Carlin, Poison, and Stoffer (1992) show that for linear Gaussian evolution models of 

the form (2.1), the proportionality (2.5) specializes to

p{Pt\Pâ t, Vt ) oc
if t =  0

( 2 .6 )

with

B t_1 =
Qt +  Ft+i Qt+i Ft+1>

Qt~l .

if < =  o, . . . ,  r  — i

l i t  = T.
(2.7
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f a0 Q 0 1 + flt+i Qt+i  l-Ft+ir 

't =  < /3t_ i Ft Qt-1 +  0 t+i Qt+i

iff =  0 

Wi, if f =  i  r - i

0 t - i F t Qt~ \  if t = T. (2.8)

Note that one has to assume nonsingularity of Q0 and Qt- Fahrmeir, Hennevogl and 

Klemme (1992) use an EM-type algorithm (Section 2.2.2) to estimate the unknown 

hyperparameters a 0, Qo, and Q t =  Q- Here, Fahrmeir, Hennevogl and Klemme only 

consider the situation when Q t is independent of t. Or one can treat hyperparameters 

as a stochastic parameter with some prior distribution. This approach is illustrated 

in Chapter 4 and its application is in Chapter 5.

To obtain a random observation from the conditional density p(/3t |/3s?;t. y^).  

Fahrmeir, Hennevogl and Klemme (1992) use rejection sampling (Devroye. 1986: Rip­

ley, 1987). In the context of rejection sampling a random observation j3t is drawn 

from a density g and accepted with probability f(/3t)/(g(/3t)Mt) where /(/3t ) has to 

be proportional to p03t|/3*^t,2/£.) and the constant Mt has to be chosen so that

Mtg(/3t) > /(/3t ) for all /3t . (2.9)

In view of (2.6) one can set f((3t ) = p (l/t |/3t,yt*_1)Ar(Bt6t ,Bt), and g(/3t ) = -V(Btbt .B t ). 

Then the condition (2.9) corresponds to

Mt > p(yt \Pt, Vt-i)  for all j3t , (2.10)

and the N (Bt6t ,B t)-drawing /3t is accepted if

« < p(ytl/3t ,y t*_i)/M, 

where u denotes a uniformly distributed random number on [0,1]. For a multinomial
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observation density p(yt\Puyt-i) condition (2.10) is fulfilled by Mt = 1.

With the conditional densities (2.4) and rejection sampling, the Fahrmeir. Hen­

nevogl and Klemme’s (1992) Gibbs sampling procedure runs as follows: Given a set 

of arbitrary starting values (Pt°^), t =  0 ,. . .  , T one has to draw /3qX) from the condi­

tional density p(P0\P± \ . .. .yJ^.jjy), then from p(/3i|/3^1),/9^0). . .. . y ^ . y ^ ) .  and 

so on up to P ^  from p{Pr\P^\-  ■ • jJ /t-h J /t)’ t0 complete one iteration. After K

such iterations which define one Gibbs run, the (T +  l)-tuple (PqKKp [K  ̂ P ^ )

is obtained. Under suitable regularity conditions (Smith and Roberts. 1993). the 

samples output from the Gibbs sampler can be used to mimic a random sample from 

the joint posterior density p(/30,/3x, . . .  ,Ptly?)- Carrying out G Gibbs runs yields 

g =  1, . . .  ,G i.i.d. (T + l)-tuples (PqK'9\ p [ k,9\ .  .. ,P^C'9^). These can be used to 

estimate the marginal posterior density p(Pt \y^) by

P(Pt\yr) = ,Vt ):
9=1

as long as the conditional density piP t lPa^yx)  is given in closed form. If no closed 

form expression is available, the moments Pt\t  and Vtyr of the marginal posterior 

density p(Pt \y^) can be estimated by

Ait = g  £  A(K,S). %T = 1  E<Ak,s) -  /VK/5t(*'sl -  &trr)’-
9=1 g= 1

Gelfand and Smith (1990) argued that a slightly preferable estimate of this marginal 

posterior density is to use the sample path average, i.e.

1 K 

k= 1
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However, Fahrmeir, Hennevogl and Klemme (1992) apply the Gibbs sampler 

to estimate the posterior moments in a rainfall data (will be introduced in Section 

5.1) and claim that

. . .  it turned out that appropriate choice of starting values has a signif­

icant effect on the number of iterations required for one Gibbs run. We 

recommend using posterior mode smoothing estimates, which are easily 

obtained by generalized extended Kalman filtering and smoothing. Then, 

in contrast to arbitrarily chosen starting values, convergence of one Gibbs 

run takes only 20 to 40 iterations.

In particular, there are typically strong positive correlation between the consecutive 

Gibbs samples. Estimates of moments of the marginal posterior densities based on 

short Gibbs sampler runs with high correlations axe not accurate (Gew-eke. 1992). And 

due to the strong dependency in the sequence the series may appear to have converged 

to stationarity even earlier. One needs larger samples than would be required if 

independent sampling were possible. A further analysis of this rainfall data using the 

MCMC algorithms is in Section 5.1.

2.3 Other Estimating M ethods for the M DGLM

In the preceding section, we discussed three different estimation approaches based 

on posterior densities. Many other estimating methods are also available. Monte 

Carlo methods are a particularly attractive choice. In recent years. Markov chain 

Monte Carlo techniques have become very popular as a wray of generating a sample 

from complicated probability distributions, such as posterior distributions in Bayesian 

inference problem. A generated posterior sample can then be used for virtually any 

posterior inference.
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There are two basic algorithms for Markov chain Monte Carlo. Gibbs sampling 

(Geman and Geman, 1984; Gelfand and Smith, 1990) and the Metropolis-Hastings 

(M-H) algorithm (Metropolis et al., 1953; Hastings, 1970). The Gibbs sampler is ac­

tually a special case of the M-H algorithm (Hastings, 1970; Gelman. 1992). Unlike the 

Gibbs sampler, the M-H algorithm updates several parameters at a time, rather than 

only one at each step. This is particularly useful for a higher dimensional conditional 

posterior distribution. Also unlike the Gibbs sampler, the M-H algorithm can sample 

from any posterior distribution by selecting a proposal density from which it is easy 

to sample, and is not restricted to posterior distributions where full conditionals are 

available for generation.

The M-H algorithm is very general, allowing a variety of useful special cases 

based on the different choices of the proposal density. Tierney (1994) presents a few 

examples of proposal densities that are useful for examining posterior distributions, 

such as Random Walk Chains, Independence Chains, Rejection Sampling Chains. 

Autoregressive Chains, and Grid-based Chains. In addition, the methods outlined 

here can be combined into hybrid strategies. These methods can be used to construct 

more efficient algorithms which will be explored in the next chapter.
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Chapter 3

Markov Chain Monte Carlo 
Sampling

Starting with the work of Metropolis et al. (1953), Markov chain Monte Carlo meth­

ods have been widely used to solve problems in statistical physics and, more recently. 

Bayesian statistical inference. This chapter presents the basic methodology of Markov 

chain Monte Carlo methods, emphasizing the calculation of features of posterior dis­

tributions. We will introduce several algorithms, including Metropolis-Hastings al­

gorithms, adaptive rejection algorithms and other variations to simulate multivariate 

distributions. Various Markov chain Monte Carlo methods and their applications can 

be found, for example, in Geyer (1992), Smith and Roberts (1993), Besag and Green 

(1993), and Tierney (1994).

3.1 M etropolis-Hastings Sampling Algorithms

The Metropolis-Hastings algorithm shares many features of the Gibbs sampler, but is 

more generally applicable, as it avoids any need to sample from difficult distributions. 

It can be applied to any Bayesian problem as long as it is possible to compute the ratio 

of the probabilities, or probability densities, of two states. Suppose that we wish to 

sample from the joint distribution for x  =  (x i,. . .  ,x t ), with respect to a distribution 

given by some density function, Let q(x,y) denote a candidate generating

density, where f  q(x,y)dy =  1. This density is to be interpreted as saying that when a

21
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process is at the point x  the density generates a value y  from q{x,y). The Metropolis- 

Hastings algorithm does this by repeatedly considering randomly generated changes 

to the components of x,  accepting or rejecting these changes based on how they affect 

the probability of the state. The algorithm can be described as follows:

4. Set t =  t +  1, and go to step 2.

Several remarks about this algorithm are as follows: (1) The M-H algorithm is speci­

fied by its candidate generating density q(x,y). (2) If a candidate value is rejected, the 

current value is taken as the next value in the sequence. (3) The calculation of R(x.y)  

does not require knowledge of the normalizing constant of 7t(-), since it appears both 

in the numerator and denominator. (4) If v{y)q{y,x) > Ti{x)q(x,y). the chain moves 

to y, otherwise it moves with probability given by 7r(y)q(y1x)/n(x)q(x .y) .

Under mild regularity conditions, the joint distribution of this x can be 

shown to converge to the joint distribution of x. The regularity conditions required 

are irreducibility and aperiodicity (e.g., Roberts and Smith, 1994). What these mean 

is that, if x  and y  are in the domain of tt(-), it must be possible to move from x to 

y  in a finite number of iterations with nonzero probability and the number of moves 

required to move from x to y  is not required to be a multiple of some integers. These
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2. Generate a candidate y  from the proposal distribution ^ (x ^ , •)•
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y  with the probability R { x ^ , y ) .  

x (t) otherwise,

where



www.manaraa.com

CHAPTER 3. MARKOV CHAIN MONTE CARLO SAMPLING 23

conditions are usually satisfied if q(x,y)  has a positive density on the same support 

as that of 7r(-). For more extensive theoretical results see Roberts and Smith (1994). 

Besag and Green (1993) and the recent overview by Tierney (1994).

These conditions, however, do not determine the rate of convergence (Roberts 

and Tweedie, 1994), so there is an empirical question of how much of the initial 

sample should be discarded and how long the sampler should be run. One possibility, 

due to Gelman and Rubin (1992), is to start multiple chains from dispersed initial 

values and compare the within and between variation of the sampled draws. This 

entire area, however, is quite unsettled. For further details see Gelman and Rubin

(1992) and Geyer (1992).

In order to implement the M-H algorithm, it is necessary that a suitable pro­

posal distribution be specified. Clearly, different specific choices of q{x,y) will lead to 

different specific algorithms. Tierney (1994) provides a systematic taxonomy of the 

kinds of choice available. Two special cases are random walk chains and independence 

chains.

3.1.1 Random Walk Chains

One family of proposal distributions, which appears in the work of Metropolis et 

al. (1953), is given by q(x,y) = f ( y  - x),  where /(•) is a multivariate distribution. 

The candidate y  is thus drawn according to the process y  =  x  +  z. where 2 is 

called the increment random variable and follows the distribution /(•). Since the 

candidate is equal to the current value plus noise, this case is called a random walk 

chain. Possible choices for /(•) include the multivariate normal distribution and 

multivariate t distribution. Note that when /(•) is symmetric, the usual circumstance.
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f ( z )  =  / ( —z). The probability of a move then reduces to

R  =  m in { ^ - ,  1}.
7 r(®)

Roberts and Tweedie (1994) give a general theorem on geometric ergodicity 

of Metropolis samplers on R d that iterate a single elementary update with a random 

walk proposal of the form q(x ,y ) =  f ( y  - x)  where q is any density satisfying f ( x )  = 

/ ( “ *)•

3.1.2 Independence Chains

Candidate steps y  can also be chosen from a fixed density / .  This option is discussed 

in Hastings (1970). In this case, q(x,y) =  f (y )  and the acceptance probability R  can 

be written as

w(x)

where w{x) =  n (x ) / f (x ) .  This function w is the importance weight function that 

would be used in importance sampling using f ( x )  as an importance distribution. 

Thus, it is useful to choose /  to produce a weight function that is bounded and as 

close to constant as possible. Possible choices for /(•) include multivariate t distribu­

tions, split-i distributions, or other distributions that have been found to be useful 

as importance distribution. Roberts and Tweedie (1994) show that an independence 

chain is geometrically ergodic if and only if w(x) is bounded.

Although these are the main two examples that we consider in this thesis, 

other techniques, such as Grid-Based Chains, Rejection Sampling Chains, etc.. can 

clearly be applied as well.
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3.2 Adaptive Rejection Algorithms

In contrast to the MCMC methods described above, a classical simulation technique 

to generate independent samples is the rejection sampling method. Although not an 

MCMC method, it uses some concepts that also appear in the Metropolis-Hastings 

algorithm and is a useful introduction to the topic.

The rejection algorithm (Devroye, 1986: Ripley, 1987) to sample from the 

target density f (x)  requires finding a envelope density g(x) from which it is easy to 

sample and for which there exists an M  such that f(x) /g(x)  < M  for all in D 

(where D denotes the domain of f{x)). Then the rejection algorithm proceeds as 

follows:

1. Sample a value y from g(x) and u independently from uniform(O.l).

2 . If u < f{y)/[Mg(y)) then accept y and return to step 1. Otherwise reject y and 

return to step 1.

The rejection algorithm is only useful if it is more efficient or convenient to 

sample from the envelope density g(x) than from the target density f ( x )  itself. With 

a suitable envelope function the rejection algorithm can generate samples from the 

target density efficiently.

When applying the rejection algorithm within the Gibbs sampler, it may be 

very inefficient, since the conditional distribution for each parameter changes from 

iteration to iteration, it is difficult to find a suitable envelope density g(x) and locate 

the mode of the target density in order to find c. Gilks and Wild (1992) proposed an 

adaptive version of rejection sampling (ARS), and Gilks (1992) further tailored it to 

produce a form called derivative free adaptive rejection sampling that both assume 

the target density f (x)  must be log-concave. The ARS proceeds as follows:
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(1) Initialization Step

We assume that D is convex and /(x ) is continuous and differentiable in D and 

h(x) =  ln /(x ) is concave in D. Suppose that h(x) and h'(x) have been evaluated at k

abscissae in D: Xi < x 2 < .. .  < Xk. Let Tk =  {x, : i =  1, . . .  , k}. For j  =  1......... k — 1

the tangents at Xj and Xj+i intersect at

z j  =
_  h { X j + i )  -  h ( x j )  -  X j + i h ' { x j + i )  +  X j h ' ( x j )

h ' { x j )  -  h ' ( x j + 1)

We define the rejection envelope on Tk as exp[u*(x)], where Uk(x) is a piecewise 

linear upper hull formed from the tangents to h(x) at the abscissae in Tk. Thus, for 

x € [zj-i, Zj] and j  =  1, . . .  , k. we define

uk{x) =  h{xj) +  (x -  Xj)ti{xj) (3.1)

where zq is the lower bound of D (or -oo if D  is not bounded below) and zk is the upper 

bound of D (or +oo if D is not bound above). We also define the squeezing function 

on Tk as e.\p[/fc(x)]. where 4 (x) is a piecewise linear lower hull formed from the chords

between adjacent abscissae in Tk- Thus for x € [x_,. xJ+1] and j  = 1 k -  1. we

define

lk(x ) _  (Zj+i ~ x)h(xj) +  (x — Xj)h{xj+l)
Xj+i Xj

For x < Xi or x > x* we define /*(x) =  - oo. Thus the rejection envelope and squeezing 

function are piecewise exponential functions. The concavity of h{x) ensures that lk(x) 

< h(x) < uk(x) for all x in D. Finally, we define

=
f Dexpuk(x')dx'
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If D is unbounded on the left then choose Xi such that h'(xi) > 0 . If D is unbounded 

on the right then choose x* such that h'(xk) < 0. Having defined k starting abscissae, 

calculate the function uk(x). Ik(x), and sk(x) from equations (3.1). (3.2). and (3.3) 

respectively. To sample m  points independently from }{x) by adaptive rejection 

sampling, perform the following sampling and updating steps alternately until w 

points have been accepted.

(2) Sampling Step

Sample a value y from sk(x), and independently u from uniform(O.l). Perform 

the squeezing test: if

u < exp{lk{y) -  ufc(y)} 

then accept y. Otherwise evaluate h{y) and h'(y) and perform the rejection test: if

u < exp{h(y) -  mt(y)}

then accept y; otherwise reject y.

(3) Updating Step

If h(y) and h'(y) were evaluated at the sampling step, including y in Tk to 

form Tk+i and relabeling the elements of 7fc+i in ascending order. And construct 

the functions Ufc+i(x), /fe+i(x), and sk+i(x) from equations (3.1), (3.2). and (3.3) 

respectively on the basis of Tk+X. Return to the sampling step if m points have nor 

yet been accepted.

The adaptive rejection sampling algorithm has two important features com­

pared with other existing methods for generating independent observations from a 

probability density function. First, for generating from log-concave density functions 

and most universal random variate generating methods, such as rejection sampling 

or the ratio of uniforms methods, ARS does not require knowledge of the position of
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the mode. Second, the rejection probability is decreasing as more random variates 

are sampled from the envelop function because with the addition of more points the 

density function is closer to the upper and lower functions used to squeeze it.

Gilks, Best, and Tan (1995) have proposed a further modification, adaptive 

rejection Metropolis sampling (ARMS) in which the sample y that has been accepted 

at step (2) is passed through an additional Metropolis-Hastings acceptance step. This 

algorithm removes the necessity for log-concavitv of the target density because the 

Metropolis step corrects for violations of the envelope.

Now, we apply the ARS approach to Gibbs sampling. Suppose we wish to 

sample from the joint distribution for x  =  (x i,... , xr). To implement the Gibbs

sampler, initial values are assigned to each component, x[°\ i =  1 T. Then

the Gibbs sampler repeatedly replaces each component with a value picked from 

its distribution conditional on the current values of all other components [x,|xJ=,]. 

where [-|-] denote a conditional distribution function. To apply adaptive rejection 

sampling to a Gibbs sampler, we require that the full conditional distribution [x, |.rJ5;,] 

is continuous, differentiable and log-concave with respect to x,. Most commonly used 

densities are concave on the logarithmic scale with respect to both random variable 

and distributional parameters. However, when this is not so, the log-density may be 

concave with respect to a suitably transformed random variable or parameter (Gilks 

and Wild, 1992). Therefore, taking logarithms in [xi\xj&], the /i(x,) =  ln[x,jxJ=I] will 

be concave with respect to x,. In these circumstances adaptive rejection sampling 

can be used to sample efficiently from h(x,).

Furthermore, if Xi is multivariate, then adaptive rejection sampling can still 

be used. For each component x ^  of X*, the univariate full conditional [x,*|-] is propor­

tional to the multivariate full conditional [®*|-]. Therefore, if [x<|-] is log-concave with 

respect to x if then [xifc|-] will be log-concave with respect to x ik. Thus, the Gibbs 

sampler can be implemented to update each component x ik in turn using adaptive
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rejection sampling with h(xjk) = ln[x,*|*].

3.3 A uxiliary Variable M ethods

Suppose that we wish to sample from the joint distribution for x  = (x i . . . .  . x T) with 

respect to a distribution given by some density function, ~(x)  for x  e  X. When high 

correlations among the components of x  are present, the Markov chain Monte Carlo 

algorithms such as the Gibbs sampler that update component-wise using conditional 

distributions will converge very slowly. Auxiliary variable techniques (Besag and 

Green, 1993) have been recommended as a method of breaking correlation. These 

auxiliary variables enable us to design simple chains that make substantial changes 

to many components at once when these components display strong dependence.

In the method of auxiliary variables, the state variable x  is augmented by one 

or more additional variables u  £ U. The joint distribution of x  and u  will be defined 

by taking the given distribution of interest ir(x) as the marginal for x  and specifying 

the conditional 7r(it|*); for the moment this can be chosen quite arbitrarily. We 

write tt(x ,u ) =  -k { x )-k {u \x ),  s o  that ir(x\u) oc ir(x.u). We now construct a Markov 

chain on Ax U that alternates between two steps of transition: first, u  is drawn from 

7r(w|x); then, x  is from ~(x\u). Such an approach defines a valid MCMC procedure 

for tt(x) (Besag and Green, 1993).

The purpose of the constructions is effectively the Gibbs sampler applied to 

n(x,u), with block updating of all of u, then all of x,  alternately. That is. given 

®(t), we first draw u (t) from 7r(u|aj(t)), then draw from ~ (x |u (t)). When

dealing with more complicated models, direct simulation from ~{x\u) is unlikely to 

be available. The following construction introduced by Edwards and Sokal (1988)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER 3. MARKOV CHAIN MONTE CARLO SAMPLING 30

provides an alternative possibility. Suppose that tt(x ) can be written in the form

7r(a;) oc 7r0(x) n w « ) ,  
k

where t t q ( x )  is a simple distribution. Then, if we introduce one auxiliary variable Uk 

for each interaction b k { x ), and define 7r(u|x) to be the uniform distribution on the 

rectangle n*[0, bk], we have

■k {x , u ) =  7r(aj)7r(it|x)

=  7r0(x)nfc6fc(®){/[0 < uk < bk ix^bk ix) '1}

=  7ro(*)Arrifc{0 < uk < &*(*)}],

where I  is the indicator function. Thus x(x\u)  is simply tt0(cc). conditional on the 

constraints {&*(*) That is, given we first draw u  from 7r(uja;(t)). then

draw cc(t+1) from tt0(x), and impose the conditions {6fc(x(t+1)) >uk} by rejection. 

Moreover, the above equation demonstrates how auxiliary variables help to kill awk­

ward interactions among components of x  by introducing one auxiliary variable Uk 

for each interaction bk{x).

There is an interesting comparison that can be drawn here with three similar 

approaches. Suppose that we wish to sample from the joint distribution for x  =  

(x i , . . .  , X t ),  with respect to a distribution given by some density function. ~ ( x ) .

1. The rejection sampling for tt(x), based on drawing from the envelope density 

tto(x) (Section 3.2), which produce independent samples but requires normal­

ization of both 7r and tt0.

2. The Metropolis-Hastings algorithm for 7r(x), using ir0(x) as proposal distri­

bution (Section 3.1), which produces dependent samples but does not require
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knowledge of distribution tt and can sample from any suitable family of distri­

bution.

3. The data augmented algorithm (e.g.. Tanner and Wong. 1987: Albert and Chib. 

1993) for 7r(cc). based on sampling from the augmented data posterior ~0(x\u). 

where u  is a latent variable. The data augmented algorithm exploits the sim­

plicity of the posterior distribution of the parameter given the augmented data.
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Chapter 4 

MCMC Samplers for Binary Data

In this chapter, we provide a detailed, introductory exposition of the M-H algorithm 

for MDGLM’s. We derive a modified version of adaptive rejection sampling to ap­

ply the Gibbs sampler to full conditional densities of MDGLM’s. in particular, fol­

lower dimension situations. We also discuss applications of M-H algorithms, random 

walk chains and independence chains to MDGLM’s and discuss issues related to the 

choice of the candidate generating densities and implementation. A block M-H algo­

rithm is introduced for situations when the acceptance rate is near zero. Three link 

functions, probit, logistic, and mixtures of normal distributions will be introduced 

and the connection among them will be explored in an example in the next chapter. 

Applications of the methods illustrated in this chapter to univariate dynamic gener­

alized linear models will be examined in the Chapter 5; applications to multivariate 

dynamic generalized linear models will be examined in the Chapter 6.

4.1 A Modified Version of ARS

Gibbs sampling is a MCMC technique for drawing dependent samples from complex 

distributions. In the Bayesian context, these distributions are usually posterior distri­

butions of the model parameters, and samples produced by the Gibbs sampler can be 

used straightforwardly for Bayesian inference. At each iteration of the Gibbs sampler, 

each parameter or set of parameters is updated in turn by sampling a new value from 

its full conditional distribution. The full conditional distribution of a parameter is its

32
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distribution conditional on the data and on the current values of all the other parame­

ters. Thus, from one iteration to the next, full conditional distributions change as the 

conditioning parameters change. So methods for constructing full conditional distri­

butions and for sampling from them must be very efficient. Certain full conditionals 

reduce analytically to well known distributions, for which special methods for effi­

cient random variate generation are available. More usually no analytical reduction 

is possible. Gilks and Wild (1992) show that in practice full conditional distributions 

are often log-concave, and proposed the ARS method for efficiently sampling from 

univariate log-concave distributions. However not all models of practical importance 

yield log-concave full conditionals. One such example is the non-linear mixed effect 

model. Gilks et al. (1995) extend the ARS to deal with distributions that are not 

log-concave by appending a Metropolis-Hastings algorithm step.

4.1.1 Modified ARS within the Gibbs Sampler

As shown in equation (2.5), the full conditional density of univariate dynamic gen­

eralized linear models (q =  1) under the usual assumptions (Al). (A2). and (A3) is 

proportional to

p(Pt\Ps^t-.yhxT) <xp(yt\0t,yI-i,xmt)p(flt+Mp{l3t\j3t-i)-

Instead of making the effort to reduce the full conditional densities analytically to well 

known distributions, for which standard algorithms are available to generate random 

variates or to figure out the log-concave property of full conditional densities, for 

which ARS or ARMS is available to generate random variates, we propose a modified 

version of ARS in the application of Gibbs sampling. The key is provided by the 

following.

We assume that the target density, the full conditional density f ' ( x ) .  can be
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written as /*(x) oc /(x )r(x), where f (x )  is a log-concave function and r(x) is a density 

function such that efficient random variate generation is possible from e“(r,r(x). where 

u(x) is a piecewise linear upper hull for /(x ) constructed by the ARS method. Then 

our modified algorithm proceeds as follows:

(1)' Initialization Step

We assume that D* is convex, where D'  denotes the domain of f '{x ) .  and 

/(x ) is continuous and differentiable in D* and h(x) =  ln /(x ) is concave in D". Also 

assume h*(x) =  ln/*(x) =  h(x) +  lnr(x). Suppose that h(x) and h'(x) have been 

evaluated at x 1; where xi € D*. Let Tx = {xt }. We define the rejection envelope on 

7\ as exp[ui(x)], where ux(x) is a linear upper hull formed from the tangents to h(.r) 

at the abscissae xi. Thus, for x € [zq,  z x] we define

ui(x) =  h{xx) +  (x -  xi)h'{xi), (4.1)

where z0 is the lower bound of D" (or -oo if D* is not bounded below) and is the 

upper bound of D* (or +oo if D* is not bound above). Let uj(x) =  Ui ( x)  + l n r ( x ) .  

The concavity of h(x) ensures that h(x) < ux(x) for all x in D m. thus. h‘ (.r) = h(x) 

+ lnr(x) < u x(x) +  lnr(x) =  u\(x). Finally, we define

S :( l )  = j7 ^ u -WJx' ael,,1I'r(x)- N'2)

To sample a point independently from /*(x), first, we sample a value y from s\(x). 

and independently u from uniform(0,l), then perform the rejection test: if

u<exj>{h*(y) - u \ ( y ) }

then accept y ; otherwise perform the following updating and sampling steps until 

accepted. Set k =  1.
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(2)' Updating Step

If y was rejected at the sampling step, including y in Tk to form Tk+X and relabeling

the elements of Tk+i in ascending order (i.e., x\ < x2 <  . . .  <  x k+x). For j  =  1 k

the tangents at Xj and Xj+X intersect at

Zj  =
_  h{xj+i) -  h{xj) -  xj+xh'(xj+x) + x j h'(xj )

h'{xj) -  h'(xj+i)

And construct the functions u£+1(x), Tk+l{x), and s*k+l(x) on the basis of Tk+X. Thus 

for x € [zj-i, Zj] and j  =  1, . . .  , k + 1, we define

uk+i(x ) = h(xj ) + { x - x j )h'{xj )+ ln r{x )  = uk+l(x) +  lnr(x).

where z0 is the lower bound of D* and zk+l is the upper bound of D'. We also define

k + d  ’ f D . e x p u - M ( x ' ) d r ' C C e  r ( l } ■

Finally, for x  e  [xj,x_,-+i] and j  = 1 ,... , k, we define

, ,+ iW  =  (IJ+, -  x)h(Xj) + (x -  Xj)h(xj+1) +  ln r( i)  =  lM i l ) + l n r { x ]
X j + 1 ~  X j

For x < x x or x  > xfc+1 we define l*k+l{x) =  - oo.

(3)' Sampling Step

Sample a value y from s*k+l(x), and independently u from uniform(0,l). Perform the 

squeezing test: if

« < e x p {iUi(y) ~ u'k+i(y)} 

then accept y. Otherwise evaluate h(y) and h!(y) and perform the rejection test: if

«<exp{/i*(y) -Ufc+1(y)}
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then accept y: otherwise reject y. Return to the updating step if a point has not yet 

been accepted.

4.1.2 Proof of the Modified Version of ARS

The proof that modified adaptive rejection sampling leads to independent samples 

from f*(x) is in the following. Let y denote the nth sampled value of y \  whether or 

not it was accepted or included in Tk. Let

Sn =  <
1 if y was accepted at the squeezing or rejection test. ^

2 if y was rejected.

Let Hn denote the history of the process, up to and including the processing of y: 

so Hn =  {(y,Si);i = 1 ,... ,n}. Thus Hn defines the current upper and lower hulls. 

Let [-|-] denote a conditional probability density function and U be an independent 

uniform [0,1] random variable. Then

P[<5n+i =  l |# n] =  P[U < exp(h*(x) -  4(x)}|i7„]
r expAVx) expu-(i) ,
JD’ expuj(x) JD. expu-(x')dx' ax

=  f n. exphi(x)dx 
I  a- exp«-(x')dx'

and so

P[Sn + l = l \ H „ ]

e x p h u y ) / f n expui(x')dxr 
I D- exptii(x)dx/iD. expui(x')dx'

exph’(y*)/ f D. exp[hmk(x)]dx

n r )
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which does not depend on Hn. Thus accepted values of y are drawn independently 

from / ’ (y).

4.1.3 Modified ARS and DGLM

Since the full conditional density of univariate dynamic generalized linear models 

under the usual assumptions (Al), (A2), and (A3) is proportional to

p(/3tlA#£,yf,*f) ocp(yt\Pt,yi~i^t)p(0t+i\0t)p(0t\Pt-i)-

the assumption of the modified version of ARS is usually satisfied. The modified ver­

sion of ARS we propose, requiring only that the likelihood function. p{yt\3t. y[_x.x't ) 

is log-concave and p((3t+i\Pt)p(l3t\Pt-i) is a density function, is generally applicable to 

the univariate dynamic generalized linear models. Even if a non-log-concave density 

is present in the form of the posterior densities, the ARMS can be used to implement 

this modified ARS, in which the sample y that has been accepted at step (3)' is passed 

through an additional Metropolis-Hastings acceptance step. However, when applied 

to high dimensional observations, it could be very complex and difficult to write a 

problem-specific code for generating variates from the model.

Compared to the ARS, the modified version of ARS has a number of advan­

tages. First, the modified ARS only needs to start at one point instead of two points 

in the ARS algorithm and therefore, thus simplifying the ARS algorithm. Second, 

applying this modified ARS within Gibbs sampling requires simulation mainly from 

standard distributions such as multivariate normal and therefore is easy to implement 

in many statistical computer languages. A nice feature of this modified ARS is that 

if r(x) is from an exponential family, then eu(x>r(x) is also a piecewise exponential 

family. For linear Gaussian evolution models of the form (2.1), the r(x) is a normal 

density and the eu(l)r(x) is only a shift the location of r(x) for each piece because
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of u(x) is piecewise linear in x. To illustrate this feature, consider the analysis of 

univariate dynamic generalized models with linear Gaussian evolution models. In 

the plain Gibbs sampler, a sample (3t is generated from N(fx,cr2) and accepted if 

u < p(yt\0t), where u denotes a uniformly distributed random number. For applying 

the Modified ARS algorithm within the plain Gibbs sampler, a sample 3t is generated 

from N(fT.a2) and accepted if u <exp{/i*(/3t) — n*(/3£)}, w'here /j ’  =  / j  + <72h'(3,). 

h*, u*. and ti  are as indicated in the above section, and f3t is the accepted sample 

value of the previous Gibbs run. Finally, in the nice form of r(x). the calculation of 

sMk{x) can be omitted and samples can be generated from r(x) with minor adjustment. 

This simplification is especially attractive when s*k(x) is complex and difficult to be 

sampled from.

4.2 Use of M -H Algorithms

In order to implement the M-H algorithm, it is necessary that a suitable candidate 

generating density be specified. Typically, this density is selected from a family of 

distributions that requires the specification of such tuning parameters as the location 

and spread. This is an important matter that has implications for the efficiency of 

the algorithm. The spread of the candidate generating density affects the behavior 

of the chain in two ways: one is the acceptance rate, and the other is the region of 

the sample space that is covered by the chain. If the current value is around the 

mode and the spread is extremely large, the generated candidate will be far from 

the current value and therefore have a low probability' of being accepted. But if the 

spread is chosen too small, the chain will take longer to traverse the domain of the 

density, and low probability regions wdll be under-sampled. Both of these situations 

are likely to be reflected in high autocorrelations across sample values.

For the MDGLM, the posterior density under assumptions (Al). (A2). and
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(A3) is
r t

*(0t ) « y i - v x t)Ylp(Pt\Pt-i)p{0o).
t=i t=i

where /3t has dimension p. We now illustrate the use of different candidate gen­

erating densities in two special cases of M-H algorithms, random walk chains and 

independence chains, to generate samples.

4.2.1 Random Walk Chains

The candidate y  is drawn according to the process y  = x  + z,  where z  — {z'1 z'T )

is the increment random variable and follows the candidate generating distribution 

/(•). If /(•) is symmetric, the probability of a move then reduces to

„ . f Tr(x + z) .R  =  mm{ — - - - ; .l} .
7r(a;)

Several easily generated candidate densities are suggested in the following, for which 

the parameters need to be adjusted by experimentation to achieve an optimal accep­

tance rate:

1. The increment random variable z i is distributed as multivariate uniform, i.p..

the j th  component of z\ is uniform on the interval (—£*,, 8^). j  =  1 p. Note

that 8ij controls the spread along the coordinate axis.

2. The increment random variable z i is distributed as independent multivariate 

normal iVp(0,S ,), where £,• =  diagonal(u^,. . .  ,ofp).

3. The increment random variables z'0 and z i are distributed as

z0 ~  iVp[0, £ / ( l  -  p2)], Zi\zi-i ~  Np[pzi-i, £ ], i =  1 T.
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where p and S  can be approximated by Co\'{f3i,(3i-\) and \  ar(/3f). respectively.

Although these are the only three examples that we list here, other techniques, for 

example, Split-t distributions (Geweke, 1989). the Metropolisized hit-and-run sampler 

(Chen and Schmeiser, 1993), and random walk Metropolis chains with an increment 

density that is symmetric about the origin (Muller, 1991) can be applied as well.

Recent work by Roberts, Gelman, and Gilks (1994) discusses the spread of the 

candidate generating density issue in the context of the random walk chain. They 

show that if the target and candidate generating densities are normal, then the spread 

of the latter should be tuned so that the acceptance rate is approximately 0.45 in 1- 

dimension and approximately 0.23 as the number of dimensions approaches infinity, 

with the optimal acceptance rate being around 0.25 in as low as 6 dimensions. It is 

important to mention that a chain with the optimal acceptance rate may still display 

high autocorrelations. The high serial correlations with the random walk chain are 

not unexpected and stem from the long-memory in the candidate draws. In such 

circumstances it is usually worth trying a different family of candidate generating 

densities.

4.2.2 Independence Chains

The candidate y  is drawn from a fixed density (^(j/)- Then the probability of a move 

reduces to

R  =  m in{^~—. 1},
w(x)

where w(x) =  n(x)/qo(x). As in the random walk chain, we can let q2 be a multivari­

ate normal or multivariate-f density, but now it is necessary to specify the location 

of the generating density as well as the spread.

The choice of spread of the proposal density in the independence chain is 

important to ensure that the tails of the candidate generating density dominate those
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of the target density, which is similar to a requirement on the importance sampling 

function in Monte Carlo integration with importance sampling. Thus, it is useful to 

chose q2 to produce a weight function, w, that is bounded and as close to constant as 

possible. If the weight function is constant, then the chain produces an i.i.d. sample 

from 7r since the algorithm never rejects candidate steps. As a result, if we can 

choose the candidate generating density not too different in shape from the posterior 

distribution, then the independence chain usually performs very well.

One possibility is the independence chain with candidate generated by a mul­

tivariate normal distribution with mean and covariance matrix estimated by prelimi­

nary samples generated by other M-H algorithms, i.e., <72 ~  N(0.E).  where 0 and £  

are the estimated posterior mean and covariance. Another possibility is that 0 and 

£  are the posterior mode and negative inverse Hessian evaluated at 0.

4.2.3 Block-At-A-Time M-H Algorithms

The problem of a low acceptance rate becomes serious when the dimension of the 

posterior distribution is large. One possible strategy is to apply the M-H algorithm 

to sub-blocks of the /3£. rather than simultaneously to all components of the vector.

This strategy is discussed in Hastings (1970). Suppose that /3£ =  {(3 .̂.......... 0 T)'.

is divided into k blocks =  ((/>[, . . . ,  0^)', 1 < k < T, and the existence of 

conditional transition kernel Pi\j&(<f>i\<f>j,j #  i) with the property that it is invariant 

to the conditional distributions ni\jjn{(f>i\<f>j,j #  i). Any kernel with this property will 

have invariant distribution 7t(/3£) (e.g., Tierney, 1994; Chib and Greenberg. 1995). In 

particular, the product of the transition kernels has 7r(/3£) as its invariant distribution.

With this result, several important features of the M-H algorithm can be per­

formed. A special case is the Gibbs sampler algorithm when the block sizp is one. 

This block strategy gives rise to several interesting hybrid algorithms obtained by
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combining M-H updates. Several ways to form a hybrid strategy are to use condi­

tioning. mixtures and cycles: see Tierney (1994) for further details. An example is 

Zeger and Karim (1991). Suppose (3 can be split into two components (j3i./32). and 

sampling from /3x|/32 is available but sampling from /32|/3i is not available. Then we 

can apply the Gibbs sampler to /3x|/32 and a M-H algorithm to /32|/3x- Another useful 

strategy is that in each block the M-H algorithm can take different forms according 

to the problems need or the characteristics of the conditional densities.

The cost of using blocks lies in the decreased dependence between successively 

samples although this can increase the iteration time significantly. To obtain an 

optimal compromise between serial correlation in samples and acceptance rate is nor 

as easy as we might expect. Jensen et al. (1993) present heuristic guidelines to 

obtain an optimal compromise based on the outcome of their study. However, these 

guidelines based on their empirical investigation are not as clear as we might wish. 

To apply to other areas of interest, further investigation is necessary.

4.3 Link Functions

Different choices of the link function h in the dynamic generalized linear models 

lead to different models. For example, the most popular link function for binary 

responses is the logit, which corresponds to a choice of a logistic distribution for h. 

The other commonly used model is the probit model obtained by taking h =  <$. where 

$  represents the standard normal cumulative distribution function. Albert and Chib 

(1993) investigated the sensitivity of the posterior density estimates to the different 

link functions by using Gibbs sampling in an example and the results suggested that 

inferences can be sensitive to the choice of link function. Their analysis suggested 

that the choice of link function can make a difference and that it is worthwhile to 

consider a variety of link functions. In the following, several link functions will be
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introduced. The connection among these link functions will be further explored in 

the example in Chapter 5.

4.3.1 Probit Model

The probit model is obtained if h is the standard normal cumulative distribution 

function. To apply MCMC algorithms for computing the posterior distribution, we 

introduce the data augmentation approach. The key idea is to introduce T  indepen­

dent latent variables Wi,.. .  ,wx into the model. Consider the univariate dynamic- 

generalized linear models,

E[yt\0t,yu--- ,yt-i) = "t = h{zt/3t ), p t = Ft&t-i + ft: t = i  r .

where £t is Gaussian noise, ~ N(0,Qt) and 0 O ~  N(a0,Q0). Introduce T  latent 

variables wx, . . .  . wx, where the wt are independent N{z't0 tA) and define

{ 1. if wt > 0.
(4.4)

0, if wt < 0.

It can be easily shown that the yt are independent Bernoulli random variables with

~t = P{yt =  l) =  §{z't0t)-

The joint posterior distribution of the 0 ^  = (0'o, . . . .  0'T )' and w  = (wx wT)

given the observations y  =  (z/x, . . .  , yx) is complicated. However, the computation of 

the posterior distribution of 0^, using the Gibbs sampler requires only the posterior 

distribution of 0t  conditional on w, and 0 â t  and the posterior distribution of w  

conditional on 0 £ and y. The data augmentation approach leads to simple forms for 

these full conditional posterior distributions. In the simplest form, the z '. Ft. Q t. a 0. 

and Q0 are assumed to be deterministic and known. Then, the posterior distribution
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of wt conditional on and y  is given by

wt\0Z.,y oc
N{z't(3t , l)I(o,oc)r if yt = h

N{zt(3i, l)/(_oo,o), if Vt = 0.
(4.5)

Carlin. Poison, and Stoffer (1992) show that for the Gaussian noise and (3q of 

the univariate dynamic generalized linear models, the posterior distribution of 0 t 

conditional on 0 s t̂-. and w  is given by

0 t \ 0 a ^  w  oc N {B tbt , B t), t =  0 ,. . .  . J , (4.G)

with

B t~l =
Qo 1 +  -Ft+1 Qt+I l -F*+ij 

Qt l + Ft+\Qt+i lFt+x + z tz t . 

Q t~l + z tz t ,

if t =  0

if t =  i  r  - 1

if t = T.

bt =

if t = 0

if t = 1 T  - I

if t = T.

o-o Qo 1 +  fit+ i Q t+1 lFt+i. 

f i t - i  Ft Q t 1 +  0 t+i Q t+i ^ t+ i  +  wtz t . 

f i t - i  Ft Q t 1 +  wtz v

We can treat the hyperparameters a 0, Qo, and Q t as unknown constants and estimate 

these values by usual estimation procedures, such as the EM algorithm or generalized 

least squares. To implement the Gibbs sampler, we start with initial guesses of oo- 

Qo, and Qt, simulate the wt from (4.5), and then simulate 0 t from the distribution 

(4.6). Or the hyperparameters a 0, Qo, and Q t can be assumed independent with a 

convenient prior specifications (Section 4.2.4).
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4.3.2 Mixtures of Normal Distributions

Since the posterior distribution of (3t given in. and (3s^ t is multivariate normal, it 

is possible to generalize this model by applying suitable mixtures of normal distri­

butions. This approach was illustrated in Albert and Chib (1993) by consideration 

of t-link and hierarchical models. By plotting quantiles of the logistic distribution 

against quantiles of a t distribution for various degrees of freedom. Albert and Chib

(1993) found the logistic quantiles are approximately a linear function of the quan­

tiles of t distribution with eight degrees of freedom. Thus, one can view the logistic 

distribution as an approximate member of the t family. This generalization allows 

one to investigate the sensitivity of the posterior distribution of the probabilities ", 

to the choice of link function. For example, by using mixtures of normals, one can 

generalize the probit link by choosing h to be the family of t distributions. By inspec­

tion of various posterior distributions, one can investigate the sensitivity of the fitted 

probabilities with respect to various t links and also see which value of the degrees of 

freedom is best supported by the observations.

We let the wt be t random variable with locations z't/3t - scale parameter 1. 

and degrees of freedom v. By introducing the additional random variables A,. we can 

write the distribution of wt as the following scale mixture of a normal distribution:

tut |A( oc N(ztp t j Afl), At oc Gamma (v/2 , 2/v), t = 1 T.

Let A= (A i,... ,Ar) be the vector of scale parameters and f{v)  prior density on c. 

Similar to the previous section, the full conditional distributions of w. /3£. A. and r 

are given below:
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1. The full conditional distributions of Wi,. . .  , Wt  are independent with

wt \l3Z.,y,A,v oc * l )-f(o.oc)< if yt =  1.

N {z t(3t , Arl)/(-cc,o), if lh =  0.
(4.7)

2. The fully conditionally distributions of fit are given by

p(Pt\/3ajit, w, A, v) oc N ( B tbt , B t), t =  0 ,. . .  . T. (4.8)

with

B Y 1 =

bt =  <

Qt 1 +  Ft+1 Q t+ i"lF t+i +  AtZtZt ,

Qt~l +  A tz tz v

a 0  Qo 1 +  Pt+l Qt+l lFt+lr

0 t - 1 Ft Qt  1 + (3t+1 Qt+i 1 Ft+i +  wtXtz t,

f l t - \ F t Qt 1 +wtXtz v

l i t  =  0 . . . .  . T -  1 

if t =  T.

iff  =  0 

if f =  1. 

if f =  T.

T  -  1

3. A1;. . .  , Ar|io,)9y,u are independent with

At oc Gamma (v + 1 2v
2 : u + (W(- z'/3t)::)■

4. v\w,(3^.,A is distributed according to the density proportional to

(4.9)

t= 1
(4.10)

To implement the Gibbs sampler, we start with initial guesses of a0. Q 0, and Q t. and 

cycle through the conditional distributions (4.7), (4.8), (4.9), and (4.10) in that order. 

To simulate from the full conditional distribution in equation (4.8). we can apply the
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modified ARS algorithm described in Section 4.1.1. In practice, we are interested in 

the posterior probabilities for v in a finite set and it is then easy to simulate from the 

discrete distribution (4.10).

Another suitable mixtures of normal distribution is suggested by Andrews and 

Mallows (1974). It is established that when K  has the asymptotic distribution of the 

Kolmogorov distance statistic, 2Z K  is logistic. To use this result we have to be able 

to generate random variables having the asymptotic Kolmogorov distribution. One 

possibility is to use the relation found by Watson (1961)

where l \ \ ,  W?. . . .  are independent unit exponential variables.

4.3.3 Auxiliary Variable Methods

Although the logit model is a popular model for binary responses, the generation of 

the required samples for statistical inference may not be done directly. Dellaportas 

and Smith (1993) described the use of Gibbs sampling with an adaptive rejection 

algorithm to simulate the parameters for a logistic model. The probit model which 

applies the data augmentation approach requires simulation mainly from standard 

distributions such as the multivariate normal, therefore, is easy to implement in many 

statistical computer packages. To utilize this direct sampling advantage to the logit 

model, the auxiliary variable method described in Section 3.3 provides a possibility.

The auxiliary variable method for 7t(i) is restated as follows. Suppose that 

tt(x ) can be written in the form n(x) oc 7to(x)b(x). We introduce one auxiliary 

variable u and define k{u\x ) to be the uniformly distribution on the interval [0.6], 

Then we can apply the Gibbs sampler to tt(x m ). That is, we first draw u from ~{u\x).

00
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then draw * from 7r0(x), and impose the condition {6(x) > u] by rejection. Xow. if 

7r(x) uses the logistic link, then we can let Tr0 (x) use the probit link or the family of 

t distributions and b will be the ratio of density functions for these two link function. 

Apart from b values near 0, which correspond to the tails, the distribution of logit or 

probit models is generally quite similar, the rejection rate of the condition {6(x) > u} 

should be acceptable.

4.3.4 Generalizations to a Multinomial Response

The Gibbs sampling approach can also be applied to the multinomial probit model 

(Aitchison and Bennett, 1970; Hausman and Wise, 1978). Suppose the response 

variables yt, t = 1 ,. . .  , T, have K  possible values, which for simplicity are labeled

1 ,... , K. The probabilities are simply connected by p(yt = k) = Trtk. k =  1 K.

Then we introduce T  latent variables w x, . . . .  w T. where w t = (wn ......... tr,A-)\ and

define

wtk = z'tkPt + £tk-. t = l , . . . , T ,  k = l , . . . . K .

where et =  (sa, . . .  ,£tfcY is distributed iV^(0,S). Denote y T =  (yx yT)'. where

yt € {1 .... , K}. Let z t =  {zti, . . . .  2t*r)\ the preceding model can be written as

W 1 * i/3 i
•

= +

W t Zt P t E x

or as

w ^ ,  =  +  e j ,  ^  N t k { 0 . ®  S ) ,

where uj* = [tox, . . . ,  w T]\ =  [zx, zT]'. and emT =  (e'lt . . . .  eT)'. AV/v(0.n =  

Jr® S ). McFadden (1973) has show  that multinomial logit models can be derived
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in this setup if and only if the errors are a random sample from a Type I extreme 

value distribution (Johnson and Kotz, 1970).

Consider the linear Gaussian evolution model, /3t = Ft(3t x +  t — 1 T.

where £t is Gaussian noise, ~  N(0,Qt) and /30 ~  N(a 0 ,Q0). For simplicity, the 

z't . Ft , Qt, o.0, and Qo are assumed to be deterministic and known. Also the £  is 

parameterized in terms of a vector 9 and f { 9 ) is a prior on 0. Similar to Section 

4.3.2, the full conditional distributions of w (3̂ ., and 0 are given below:

1. Given (3Z,, yT , 9. w x, , w t  are an independent collection with

w t \(3^,yT ,9  oc N{zt(3t, £ ), t =  1 , T. (4.12)

such that the ytth component of w t is the maximum. This can be simulated by 

drawing a sample iut from N ( z tf3t, £ )  and accepting the draw if the condition 

is satisfied. Another method of performing this drawing is in McCulloch and 

Rossi (1991).

2. The full conditionally distributions of are given by

p(0t\Psiit, w l ,  9) oc N ( B tbt , B t), t = 0 , . . .  . T. (4.13)

with

B r L =
Qt 1 +  Ft+\ Qt+i l -Fi+ x +  z t £  1z t , 

Q r ' + z ' Z ^ z t ,

if t = 0 T  -  1

if t =  T

Y
o.Q Qo 1 +  (3t+i Qt+i~lFt+i, if t =  0

bt = i  f l t - i  Ft Qt 1 +  (3t+i Qt+i +  if t =  1.

 ̂ P t - i F t  Qt~l +  w tT,~^zt, if t =  T.

T -  1
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3. 0|t/7y, /3J is distributed according to the density proportional to

/ ( 0 ) |n ( e ) r 1/2e x p { -i(» J , -  z'T0 ^ S l - \ 6 )[w‘T -  z'T0 'T)}.

(4.14)

To implement the Gibbs sampler, we starts with initial guesses of Oo. Qo- and Q t. and 

cycle through the conditional distributions (4.12), (4.13), and (4.14) in that order.
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Chapter 5

Performance of the MCMC  
Samplers

In this chapter, we apply the MCMC algorithms introduced in the preceding chapter

and empirically compare them with posterior mode estimates of the EKFS on a binary 

rainfall time series example. Two link functions that are approximately equivalent to 

the logistic link function are also considered.

Ishiguro and Sakamoto (1983) present a data set consisting of the number of oc­

currences of rainfall over 1mm in Tokyo for each day during the years 1983 - 1984. 

The problem is to estimate the probability nt of rainfall on a specific calendar day 

t =  1,. . .  ,366, which is believed to be gradually changing with time. Note that 

February 29 had only one observation. Kitagawa (1987) used the following simple 

dynamic binary logit model:
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5.1 Application to Binary D ata

5.1.1 Binary Rainfall Data

Binomial(l, 7rt), t =  60 (February 29) 

Binomial(2, irt), t ±  60,
( o . l )

TTt =  KQt) =  exp(/?t) /( l  +  exp (&)),

Qt =  Qt-i+Zt, Zt~N(a,o*),  Qo ~  jV(a0.<702).
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This model contains only a scalar grand mean parameter that follows a random walk 

model. The unknown hyperparameters do, and a2 were estimated by the EM-type 

algorithm as d0 =  -1.51, a\  =  0.0019, and a2 =  0.032 (Fahrmeir and Tutz. 1994). 

The results obtained by Kitagawa’s (1987) numerical integration approach and the 

posterior mode estimates of the EKFS by Fahrmeir (1992) of Trt =  h(3t(366) together 

with confidence intervals (7rt ±  a) axe almost identical.

Using the same hyperparameter values, Fahrmeir, Hennevogl. and Klemme 

(1992) applied the Gibbs sampler to the rainfall data. They found that the estimation 

of the posterior mean based on 50 Gibbs runs each having 20 iterations and based 

on posterior mode estimates of the EKFS are more or less identical. Although both 

estimators are in close agreement, the Gibbs sampler results may be inaccurate as 

the runs are too short as indicated below.

5.1.2 Diagnostics by a Long Run Gibbs Sampler

To see that the Gibbs runs used by Fahrmeir, Hennevogl, and Klemme (1992) are too 

short to get accurate results, a Gibbs sampler using the same hyperparameter values 

based on 50,000 Gibbs runs is applied to the rainfall data. In addition, to insure that 

the series obtained by the Gibbs samplers do not exhibit any unusual behavior, four 

parallel chains were run with different starting points (3 ^  =  (4 ° !.........4g6)- cho­

sen from above and below the posterior mode smoothing estimates by Fahrmeir et al. 

(1992). Ideally, the starting points should be overdispersed but not wildly inaccurate. 

The N ( 4,1), N (0,1), and iV(4,1) were chosen to ensure that our starting points for 

the iterative simulation do not entirely miss important regions of the target distribu­

tion. The data generating scheme for the starting points for four parallel chains is in 

the Table 5.1.

Plots of sample paths and autocorrelations of the parameters are two useful
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Starting point set Data generating scheme
a ? ' posterior mode smoothing estimates

i.i.d. N (4 ,1)
i.i.d. N (0,1)

e l 01 i.i.d. N ( —4,1)

Table 5.1. The data generating scheme for the starting points

tools for monitoring the performance of the samplers. Figure 5.1 (a) - (d) shows 

the trajectories of the parameter ;5173 (this parameter is the mode of the posterior 

mean sequence from the posterior mode estimates) based on the Gibbs sampler run of 

length 50.000 corresponding to the starting values /3t-°\ i = 1. 2, 3. 4. To observe the 

initial transient behavior of different starting values, we only plot the first 4.000 steps 

of the Gibbs samples. The results of these trajectory all seem to have converged to 

stationaritv. The autocorrelation curves for the parameter ^ 173 are shown in Figures 

5.2 (a) - (d). The autocorrelations show strong serial correlation and are significantly 

nonzero out to about lag 200 for all four different starting values.

Although all of these four independent series we examined seem to have con­

verged to the same distribution, one may easily get misleading answers when drawing 

inferences from a short simulated sequence without further diagnostics. Gelman and 

Rubin (1992) present a simple example to suggest that it is generally impossible to 

assess convergence of a Gibbs sampler from a single simulated series. The strong cor­

relations also imply that errors are bigger than for i.i.d. observations, thus we need 

larger samples than would be required with i.i.d. sampling. In practice, for the Gibbs 

sampler a run of length 20 would be too short to obtain accurate estimates of the 

variances of point estimators, including means, and variances. In the next section, 

several implementation issues will be considered when applying MCMC algorithms.
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(a) Started at 0 \(0)

0 1000 3000 4000

(b) Started at 0 ^

(c) Started at /3g(0)

2000
iteration

3000 4000

(d) Started at 0 ^

Figure 5.1. Trajectory of the parameter j 3 m .
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Figure 5.2. Empirical autocorrelation curve of the parameter J l73
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5.1.3 Implementation Issues

MCMC algorithms can be very useful for iterative simulation techniques, but naive use 

can give misleading answers. Because a finite number of iterations are used to estimate 

the target distribution and the simulated random variables tire, in general, never 

from the target distribution, considerable care is required in choosing, implementing 

and drawing inference from a finite iteration simulation. In this section, several 

implementation issues will be considered based on the analyzed results in Kitagawa 

(1987), Fahrmeir (1992), Fahrmeir, Hennevogl, and Klemme (1992), and preliminary 

diagnostics in the preceding section.

The most basic issue is that valid inference in Markov chain Monte Carlo 

results from averaging over one long run of the chain or multiple short runs is desirable. 

It is undeniable that multiple runs have some diagnostic value: if the results of 

multiple runs completely disagree, then the runs are too short and cannot be used 

for inference. One long run is also a valuable diagnostic: if the run doesn't seem 

stationary it is too short, and the longer the run, the better the chance of detection. 

Based on the preliminary diagnostics in the preceding section, we found: (1) for all 

different starting values, the results seem to agree with each other. (2) the results 

are also similar to the results in Kitagawa (1987), Fahrmeir (1992), and Fahrmeir. 

Hennevogl, and Klemme (1992), (3) the results based on runs of 50.000 in Figure 5.1 

show a relatively stable estimated posterior mean. We suggest using a single long run 

of length 50,000 instead of using multiple separate runs.

As noted in the preceding section, when we use a single run with a Markov 

chain to sample from a posterior distribution, a complication that arises from the 

autocorrelation is that variances of estimates are harder to obtain. Three commonly 

used approaches to computing standard errors that attempt to adjust for correlations 

are window estimators (e.g., Hastings, 1970: Geyer, 1991; Geweke. 1992: Green and
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Han, 1992), the batch means method (e.g., Ripley, 1987), and time series methods 

(e.g., Priestley, 1981). We will use the batch means method to compute the standard 

errors since it is the simplest and is easy to program. To calculate standard errors 

using batch means, the data, are divided into b batches, each of length /.

The mean fii of each batch i is calculated as

1 il
to =  j  Y ,  z =  • • • ’b'

and the standard error of the mean is estimated as

o.2)

i=l v ' i=l
(3.3)

For the unknown hyperparameters, we treat the hyperparameters as stochastic 

parameters with a prior distribution. The priors for the hyperparameters a0. and a1 

are specified by [a0] ~  N(fiao, cr2o), and [o2] ~  IG(ai, bi), where IG denotes the inverse 

gamma distribution and fia0, cr20, m, and bx are assumed known. The value of the 

hyperparameter o-q, should be similar to a2. Let a\ =  c<r2. where c > 1 to reflect 

variation in the initial guess. Thus one has to add further drawings from the posterior 

[a2|# r , cr2,a 0, y T] ~  IG{ax +  ±T,bx +  \  -  3t-1)2),

V t ] =  2<r2,

and

h l f c .  «* ,«* .»•]

to the drawings, where 0 T =  (ft, • • • , #r). and T =  366. For the binary rainfall 

data given above, the hyperparameter prior specification was defined by fiao = —1.58. 

o20 =  0.025, Oi =  | ,  6i =  0.016, and c =  2 reflecting rather vague initial information 

relative to the EM estimates provided by Fahrmeir and Tutz (1994).

All MCMC runs were coded in the XLISP-STAT (version 3) language and run
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on a HP 715/100 workstation. We compared run times of the various algorithms. 

However, run times would have been shorter if one codes in C or Fortran.

5.2 Performance of the Gibbs Sampler

In this section, we will perform a through empirical investigation of the block Gibbs 

sampler. Using rejection sampling to obtain a random sample from the conditional 

density of the block Gibbs sampler of block size n, the iteration time will increase 

quadratically in n. To find the optimal block size, some compromise obviously must 

be established. A heuristic is to choose the block size as large as possible while not 

increasing the iteration time significantly. The modified ARS algorithm described 

in Section 4.1 seems to provide a strategy that decreases the number of iterations 

significantly. Two investigations are performed: a comparison of block and plain 

Gibbs, and a comparison of rejection sampling and the modified ARS algorithm 

within the Gibbs sampler. Note that the constructed linear upper hull is independent 

in each run of using modified ARS algorithm.

Table 5.2 shows estimates of the posterior moments of the parameter for 

different combinations of block size and rejection method based on Gibbs sampler runs 

of length 50,000. Because these posterior moments are based on a single run of the 

Gibbs sampler, three values of the table give summary statistics for this run that are 

helpful for diagnostic purposes. The lag one correlation gives lag one autocorrelations 

of the sample, the SE under the posterior mean gives numerical standard errors for the 

posterior means based on the batch means method described in Section 5.1.3. and the 

SE under the posterior SD gives standard errors of the estimated posterior standard 

deviations. Batches of increasing size were collected until the lag one correlation of the 

batch means was under 0.05. For comparison, the table also shows the posterior mean 

and standard deviation of the parameter (3m  computed by applying the extended
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Kalman filtering and smoothing method described in Fahrmeir (1992).

59

Algorithm
Posterior Mean 

(SE)
Posterior SD 

(SE)
Lag One 

Correlation R
Run
Time

EKFS 0.161 0.334 j 0.5 sec.
Rejection 

within Gibbs
0.685

(0.0093)
0.547

(0.002)
0.74 0.64 208 min.

Modified ARS 
within Gibbs

0.706
(0.0095)

0.551
(0.002)

0.75 0.01 132 min.

Rejection 
within 

Block Gibbs 
Size =  2

0.688
(0.0079)

0.549
(0.002)

0.67 0.90 828 min.

Modified ARS 
within 

Block Gibbs 
Size =  2

0.707
(0.0081)

0.555
(0.002)

0.70 0.04 327 min.

Table 5.2. Estimated posterior means and standard deviations of the parameter 
/?i73 using rejection sampling and the modified ARS algorithms within the plain 
and block Gibbs sampler. R is the proportion of candidates rejected.

Based on a preliminary sample of 5.000 observations from the block Gibbs 

sampler with rejection sampling the rejection rate for block size 1. 2. 3. and 4 is 

about 63%, 93%, 98%, and 99%. Since the run time increases dramatically with 

the block size, we only presented results from using block size 2 of the block Gibbs 

sampler. The lag one autocorrelation of the block Gibbs sampler. 0.67. is still very 

high. The estimated standard errors of posterior means obtained using the block 

Gibbs sampler are slightly better than for the plain Gibbs sampler. One can get a 

better improvement by using a larger block size, but the run times could increase 

enormously. Overall, the result of using block size 2 of the block Gibbs sampler 

makes only a small improvement compared to the plain Gibbs sampler. This blocking
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strategy is not very' useful for this binary time series example.

The estimated results obtained by the modified ARS algorithm within the 

plain and block Gibbs sampler are similar to the results from rejection sampling 

within the plain and block Gibbs sampler. But comparing the rejection rate 0.01 

using the modified ARS algorithm with 0.64 using ordinary rejection sampling on the 

plain Gibbs sampler and 0.04 using the modified ARS algorithm with 0.9 using ordi­

nary rejection sampling on the block Gibbs sampler, we found that the rejection rate 

reduction obtained using the modified ARS algorithm within the Gibbs sampler is 

quite significant. However, the requirement of the initialization, sampling and updat­

ing step in the modified ARS algorithm complicated coding and increased execution 

time and makes the run times of the modified ARS algorithm within the plain and 

block Gibbs sampler about twice as fast as the rejection sampling within the plain 

and block Gibbs sampler. Thus using the modified ARS algorithm is worth while in 

this example.

The estimated posterior mean is about the same for all four algorithms. The 

value of the estimated standard deviation obtained from all four algorithms is higher 

than from EKFS. It suggested that the estimated value of this posterior moment 

could be under-estimated by the EKFS algorithm. Figure 5.3 shows the correspond­

ing estimates /3t , together with ±  one SD, resulting from the plain Gibbs sampler 

with rejection sampling. For easier reference, the estimates of 0 t obtained by the 

posterior mode estimates of the EKFS are also imposed in Figure 5.3. In these four 

algorithms, we treat the hyperparameter a2 as a stochastic parameter with a prior 

distribution to reflect the uncertainty- about this parameter. Imposing a fixed value 

of the hyperparameter a2 as is done by the EKFS algorithm seems to make the es­

timated standard deviations of the f3t parameters too tight and make their posterior 

means too smooth. This is shown in Figure 5.3 as well as Table 5.2: the local max­

imum (minimum) values of the posterior means from the EKFS algorithm tend to
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have lower (higher) values than from the Gibbs sampler because of smoothing. T I ip 

estimated posterior standard deviations from the EKFS algorithm are. at least in 

this binary time series example, also lower than the ones produced by the MCMC 

methods. The plots of the estimates of parameters with confidence bands for the 

other three algorithms are similar to Figure 5.3 and are therefore omitted.

5.3 Performance o f M-H Algorithms

We next present two examples of the use of the M-H algorithm. The first algorithm

was a random walk chain with increment random variables z '0 and zt. t = 1 T.

distributed as z0 ~  iV[0, cr2/ (1 — p2)], and zt ~  iV[p2t_1? a2], where p and o~ can be 

approximated using Cov(/3t, 0t_x) and Var(/3f). Based on the samples from the plain 

Gibbs sampler in the preceding section, we let p = 0.88 and a 2 =  0.36 in the random 

walk chain. The second algorithm was an independence chain with candidate gener­

ated by a multivariate normal distribution, N(f.i,E), where p. and X are mean and 

covariance matrix estimated by 5,000 samples generated by the plain Gibbs sampler 

form the preceding section.

When trying to update all components at a time in the random walk chain and 

independence chain, the acceptance rate becomes very low. One possible strategy is 

to apply the M-H algorithm to sub-blocks of the f3t, rather than simultaneously to 

all components of the vector as described in Section 4.2.3. The rejection rate and 

estimated standard error for block size 2 to 10 based on runs of 50,000 observations 

generating from the candidate distributions mentioned above for random walk chain 

and independence chain are shown in Figure 5.4 and 5.5. As expected, the rejection 

rate of the random walk chain increases enormously as block size increases. The 

rejection rate of the independence chain does not increases as much as for the random 

walk chain. The estimated standard errors of the random walk and independence
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Figure 5.3. Estimated posterior means and standard deviations of logit 

of probability of rainfall by using rejection sampling within the Gibbs 

sampler (• • •) and by EKFS (—).
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Figure 5.5. Estimated standard errors of random walk and independence chains.
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chains decrease as block size increases. The block size of 6 is chosen for the random 

walk chain based on Roberts, Gelman, and Gilks’ (1994) suggestion that the optimal 

acceptance rate is around 0.25. The block size of 6 is also chosen for the independence 

chain although its acceptance rate is not around 0.25.

The posterior standard moments of the parameter 8173 based on runs of 50.000 

of random walk and independence chains are shown in Table 5.3. Again, the pos­

terior means and standard deviations computed by the extended Kalman filtering 

and smoothing method are included for comparison. The high serial correlation with 

the random walk chain is not unexpected and stems from the long-memory in the 

candidate draws. It is possible that better choices of p and a2 in the candidate gen­

erating distribution of random walk chains will reduce the serial correlation. The 

independence chain performs somewhat better than the random walk chain, since the 

candidate generating density choosing in the independence chain is not too different 

in shape from the posterior distribution. Other useful strategies for independence 

chains to get better improvements are to increase the block size or to combine with 

other Markov chain algorithms. For example, the candidate generating distribution 

can be chosen from a mixture of a multivariate normal distribution X{p,.E) and a 

standard normal distribution. The mixing probabilities can be chosen to produce a 

rejection rate in the candidate generation phase of approximately 0 .75.

The estimated posterior mean is about the same for the random walk and 

independence chains. The values of the estimated standard deviations obtained from 

these two MCMC algorithms are about the same and similar to the Gibbs sampler 

values but higher than the EKFS values. It again suggests that the va lue of the 

posterior standard deviation could be under-estimated by the EKFS algorithm. The 

plot of the estimates of parameters with confidence bands is similar to Figure 5.3 and 

is therefore omitted.
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Algorithm
Posterior Mean 

(SE)
Posterior SD 

(SE)
Lag One 

Correlation R
Run i 
Time |

EKFS 0.161 0.334 0.5 sec. |
Random Walk 

Size =  6
0.708

(0.0080)
0.558

(0 .002)
0.97 0.73 155 min. I

1
Independence 

Size =  6
0.710

(0.0074)
0.556

(0 .002)
0.56 0.45 235 min. j

Table 5.3. Estimated posterior means and standard deviations of the parameter 
0i73 using M-H algorithms. R is the proportion of candidates rejected.

5.4 Choice of Link Function

Since the most popular link function for binary data is the logistic link, we first explore 

the connection between the logistic and t links and the mixture of normal distributions 

2ZK.  The logistic distribution function has the simple form F(x) =  (1 4- c~x)~l 

and the density f (x)  = F(x){l — .F(x)}. It is well known that the difference of 

|F{0x) -  $(x)|, where $(•) denotes the standard normal distribution function, is less 

than 0.023 when 0~l = 7t / \ / 3, the standard deviation of the logistic law (Johnson and 

Kotz, 1970), and is minimized to 0.009 when 0 =  0.5875 ~  (16\/3)/(lo~) (Birnbaum 

and Dudman, 1963). The kurtosis of the logistic distribution is 1.2. so that its tails 

are larger than those of the normal distribution with the same standard deviation. 

This suggests a possibly closer similarity' between the logistic distribution function 

and the distribution function of a Student t distribution.

The parameter of the t distribution may be obtained in various wavs: (1) by 

minimizing the maximum difference between the distribution functions (Mudholkar 

and George, 1978), (2) by plotting quantiles of the logistic distribution against quan- 

tiles of a t distribution, and (3) by minimizing the absolute value of the difference
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between the density functions. In Figure 5.6, we display the differences between the 

distribution function, L(x ) of the logistic random variable with unit standard devi­

ation and the distribution function t(v,x) of a Student t variable with v = 5. 6. 7. 

8, 9, 10, and 11 degrees of freedom scaled so as to have unit standard deviation, i.e. 

L(x) — t(v, x). The Student t  distributions with 7 and 8 degrees of freedom seem to 

have smaller difference than others degrees of freedom. Figure 5.7 plots quantiles of 

the logistic distribution against quantiles of t  distributions with v degrees of freedom. 

v =  5, 6, 7, 8, 9, 10, and 11, and against 2Z K  by using 20 independent exponential 

variables Wj in the relation 2K 2 =  Y^jLi Wy/j2. For probabilities between 0.0001 and 

0.9999, logistic quantiles are approximately a linear function of t{7) and t(8 ) quan­

tiles. For using 20 independent exponential variables in generating the asymptotic 

Kolmogorov distribution, the plot doesn’t show an approximately a linear function. 

In Figure 5.8, we plot the total variation distance between the density functions of 

the logistic and the Student t  with v degrees of freedom, v =  5 - 11. The Student 

t distribution around integer 7 degrees of freedom has the smallest value. Overall, 

the logistic function appears approximately equivalent to a Student t function with 7 

degrees of freedom. This statement is consistent with Mudholkar and George's (1978) 

result that the logistic distribution has the same kurtosis as a £ distribution with nine 

degrees of freedom and with Albert and Chib’s (1993) result that the logistic quantiles 

are approximately a linear function of t(8) quantiles.

When trying to update all components from the multivariate normal distri­

bution at a time for both link functions we used Cholesky decompositions, but this 

resulted in large computational time and was therefore not practical. To overcome 

this problem, Carter and Kohn (1994) and de Jong and Shephard (1995) have sug­

gested an approach which uses the state space structure to draw efficiently from the 

multivariate posterior distribution of the disturbances of the model. The strategy we
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Figure 5.6. Differences between the logistic L(x) and the Student t(c. .?•) 
distribution functions with v =  5 - 11 degrees of freedom. The logistic 
and the Student t distribution functions all scaled to unit variance. 
Seven values of degrees of freedom: 5 (bottom) to 11 (top).
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v=5 
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Figure 5.7. Plot of logistic quantile against t(v) quantile with v =  5 - 11 
degrees of freedom and 2Z K  quantile for probabilities between 0.0001 
and 0.9999.
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Figure 5.8. Total variation distance between the density functions 
of the logistic and the Student t with 5 - 1 1  degrees of freedom.

Algorithm
Posterior Mean 

(SE)
Posterior SD 

(SE)
Lag One 

Correlation
Run

Time

EKFS 0.161 0.334 0.5 sec.
t (  7) 

Size =  6
0.690

(0.0057)
0.550

(0.002)
0.22 301 min.

Kolmogorov 
Size =  6

0.693
(0.0061)

0.554
(0.002)

0.27 725 min.

Table 5.4. Estimated posterior means and standard deviations of the parameter 
/?i73 using different link functions.
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used in this binary rainfall data is to apply Choleskv decomposition method to sub­

blocks of components, rather than simultaneously to all components at a time. As 

in the M-H algorithms, blocks of size 6 are chosen for both link functions. t{ 7) and 

2ZK .  The posterior mean and standard deviation of the parameter 3i73 based on 

runs of 50,000 are shown in Table 5.4. The posterior means and standard deviations 

computed by the extended Kalman filtering and smoothing method are included for 

comparison. The results in Table 5.4 indicate that the blocking strategy is sufficient 

for this binary rainfall example. These two link functions do not show any high serial 

correlation. The estimated posterior moments of f(7) and mixtures of normal distri­

butions 2Z K  are about the same and similar to the results of using the Gibbs sampler. 

This is not surprising, since these two link functions are approximately equivalent to 

the logistic distribution. Because the implementation of mixtures of normal distri­

butions 2ZK  requires one to generate 20 independent exponential variables for the 

asymptotic Kolmogorov distribution, the run times of mixtures of normal distribu­

tions 2Z K  is slower than from the t(7) link function. Similar to the other algorithm, 

the value of the estimated standard deviation obtained from these two link functions 

are higher than from EKFS. The plot of the estimates of parameters with confidence 

bands is similar to Figure 5.3 and is therefore omitted.

5.5 Comparison of the MCMC Samplers

For comparison of all methods, the two results estimated standard error and run 

time based on chains of length 50,000 from MCMC samplers we tested are shown in 

Figure 5.9. The lower the value of the estimated standard error and run time, the 

better the performance of the algorithm. Clearly, the two link functions have the 

lowest estimated standard error, the two Gibbs samplers have the largest estimated 

standard error, and the Metropolis algorithms and the two block Gibbs samplers lie in
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between. The Metropolis algorithms and the two block Gibbs samplers have similar 

estimated standard errors, but the Metropolis algorithms apparently have shorter run 

times. For further comparison, the asymptotic relative efficiencies (ARE) adjusted 

for run time are shown in Table 5.5. For a MCMC sampler, M,  the standard error 

of the posterior mean can be estimated by the batch means method and the cost 

C(M)  for computing M  is the cpu time. Then

AKE(AA : M2) =
C(M2)

The estimated standard error of the posterior mean from the link function t{7) will 

be used as baseline (i.e., M2 in the above equation) and compared to other MCMC 

samplers (Mi). The run times may vary when coded in different languages, for 

example in C language, but the ARE should remain the same. To interpret the 

results in Table 5.5, for example, to obtain an estimate of a given accuracy the ARS 

within the Gibbs sampler requires 1.84 times the cpu time as required using the t(7) 

link function.

Mi
ARS

within
Gibbs

M. ARS 
within 
Gibbs

ARS 
B. Gibbs 
Size =  2

M. ARS 
B. Gibbs 
Size =  2

R.W.
Chain 

Size =  6

IND. 
Chain 

Size =  6
KOL. 

Size =  6

ARE 1.84 1.22 5.28 2.19 1.01 1.31

----- !

2.76

Table 5.5. Asymptotic relative efficiency of MCMC samplers compared to t{7).
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R. B. Gibbs

KOL

M. ARS B. Gibbs

T(7)

IND •
R. Gibbs • 

RW . m . ARS Gibbs

0.006 0.007 0.008 0.009
Estimated SE

Figure 5.9. Comparison of MCMC samplers.
R. Gibbs - Rejection within Gibbs.
M. ARS Gibbs - Modified ARS within Gibbs.
R. B. Gibbs - Rejection within Block Gibbs. Size =  2.
M. ARS B. Gibbs - Modified ARS within Block Gibbs. Size =  2. 
RW - Random Walk Chain, Size = 6 .
IND - Independence Chain, Size =  6.
T(7) - Student t Distribution with 7 degrees of freedom, Size =  6. 
KOL - Kolmogorov Distribution, Size =  6 .
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5.6 Summary

The main conclusions of this binary data analysis are as follows:

1. The values of the estimated posterior moments by the modified ARS algorithm 

within the Gibbs sampler are similar to the Gibbs sampler, but the run time 

is much faster than the Gibbs sampler with rejection sampling. This modified 

ARS algorithm has two advantages: (1) decreasing the iteration time and (2) 

generating samples from the same proposed distribution with minor adjustment. 

In practice, it is a very efficient algorithm within the Gibbs sampler. A disad­

vantage is that the simulations are complicated to code for block sizes higher 

than 2.

2. In general, the Metropolis algorithms perform better than the Gibbs samplers 

with rejection sampling. In the comparison of chains of length 50.000 the esti­

mated standard errors of the Gibbs sampler with the modified ARS algorithm 

is about the same as for the Metropolis algorithms, whereas the estimated stan­

dard errors of the Metropolis algorithms perform somewhat better than the 

Gibbs sampler with the modified ARS algorithm. From these results, it is clear 

that the Metropolis algorithms have quickly and accurately produced a posterior 

distribution.

3. The run time of the £(7) link function is slightly longer than the Gibbs sampler 

and Metropolis algorithms, but the estimated standard error is much better 

than the Gibbs sampler and Metropolis algorithms. Although the mixtures of 

normal distribution 2Z K  performs similarly to f(7) link function, the run time 

is much slower than t(7) link function. More efficient code for generating the 

asymptotic Kolmogorov distribution is apparently needed. Overall, the two 

link functions t(7) and Kolmogorov perform better than the Gibbs sampler and
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Metropolis algorithms. The data augmented approach seems to be useful in the 

analysis of dynamic binary logit models based on the comparison of chains of 

length 50,000.

4. For comparison of all methods, we focus on the two results: estimated standard 

error and run time. Clearly, in Figure 5.9 the two link functions have the lowest 

estimated standard error, the two Gibbs samplers have the largest estimated 

standard error, and the Metropolis algorithms and the two block Gibbs samplers 

lie in between. The Metropolis algorithms and the two block Gibbs sampler have 

similar estimated standard errors, but the Metropolis algorithms apparently 

have shorter run times. To obtain an estimate of a given accuracy the Metropolis 

algorithms and modified ARS within the block Gibbs sampler require similar 

but higher cpu times as required using the t(7) link function. The ARS within 

the block Gibbs sampler requires 5 times the cpu time as required using the 

t(7) link function to obtain an estimate of a given accuracy.

5. The estimated standard deviations of the parameters using different MCMC 

algorithms were noticeably different from the estimates obtained by the EKFS 

algorithm. Also, the means for the parameters from the EKFS algorithm were 

noticeably smoother than the ones from the MCMC methods. This is shown 

in Table 5.2, 5.3, 5.4, and Figure 5.3, in which the difference is not within 

the reasonable accepted range of a standard error of the estimated standard 

deviations of any of the MCMC algorithms. This suggested that the estimated 

standard deviations are under-estimated when applying EKFS algorithm.
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Chapter 6

Binary Events Analysis of Two 
MIRP Examples

In this chapter, we re-analyze the two MIRP studies introduced in Chapter 1 using 

the MCMC algorithms introduced in Chapter 4.

6.1 Co-Evolution Model

6.1.1 Cochlear Implant Evolution

There is growing scholarly interest in a social evolutionary theory of change for ex­

plaining how technological and institutional innovations emerge as a continuous pro­

cess of variation, selection, and retention. Most organizational models of social evo­

lution assume that variations are exogenous shocks that emerge by random chance, 

and have focused on the selection and retention processes of pre-existing variations. 

Also, most organization applications of this social evolutionary theory have treated 

variation, selection, and retention as a sequence of three discrete events. \  an de Yen 

and Garud (1992) argued that variation, selection, and retention processes are mis­

construed when viewed as three discrete events; instead, they are better understood 

as a cumulative progression of numerous interrelated acts of variation, selection, and 

retention over an extended period of time. Specifically, Van de Yen and Garud (1992) 

test the hypothesis that variations, selection, and retention events are endogenously 

related and co-produce each other over time.

The analysis is based on a longitudinal real time study conducted from 1983

75
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to 1989 of 719 events observed in the development and commercialization of cochlear 

implants, which is a biomedical innovation that provides hearing to profoundly deaf 

people. The sources of events included: direct field observations and attendance at 

trade conferences where numerous interviews were conducted with actors from dif­

ferent organizations involved in different functions of cochlear implant development, 

reviews of trade literature, monthly observations of day-long management meetings 

of one of the firms involved in this innovation, as well as the administration of stan­

dardized questionnaires and interviews every six to twelve months with key actors 

involved in the innovation. Events were coded according to whether they pertained 

to novel technical variations, institutional rule making (selection), and institutional 

rule following (retention) events. The following structural system of three simulta­

neous time series equations was developed to test the hypothesis that novel techni­

cal variations, institutional rule making (selection), and institutional rule following 

(retention) events endogenously co-evolve over time to develop and commercialize 

cochlear implants.

The Co — Evolution Model:

Vlt =  2,£—1 — $ 2 ^ 3 ,£-L  +

T 2t =  Q;2 +  $3 !  l,£—1 +  /?4^3,t-l +  € 2

i  31 =  0:3 — .80^1,t-1 +  8§Y2,t- 1 +  C3 

where

Y\ =  monthly count of the number of variation events 

?2 =  monthly count of the number of selection events 

I 3 =  monthly count of the number of retention events 

q, =  constant terms 

8 i =  parameters 

€i = error terms
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The hypothesized relationships in the above equations are consistent with 

most organizational models of evolution in the following respects. Events represent­

ing novel technical variations precipitate selection events of institutional rule making, 

and the subsequent events of following rules serve as the retention mechanism of 

those rules that were selected. However, the hypothesized model of endogenous co- 

evolution departs from most organizational models of evolution in two fundamental 

respects. First, novel technical variations are endogenous (not exogenous) to the 

model. The likelihood of novel technical variations not only increases with institu­

tional rule making events, but also decreases with institutional rule following events. 

Second, retention is commonly argued to suppress the subsequent selection of new 

variations. This negative feedback from retention to selection most likely operates 

during periods of incremental refinements of a population or a dominant design.

In order to apply regular time series analysis methods, it was necessary to 

aggregate the event sequence data into fixed temporal intervals. A monthly interval 

was chosen for regression analysis of the co-evolution model (Van de Yen and Garud. 

1992). The results of the time series regression analyses of the co-evolution model by 

Y'an de Yen and Garud (1992) are present in Table 6 .1. For each equation the table 

shows the regression coefficient and its standard error. The results in Table 6.1 is 

consistent with most organizational formulations of the evolutionary model, technical 

variation events lead to subsequent institutional rule making selection events, and 

the latter significantly predict institutional rule following retention events. However. 

Table 6.1 contains two notable empirical findings that are contrary to most formula­

tions of organizational evolution, but are consistent with the endogenous co-evolution 

model. First, novel technical variations are not exogenous to the model since they 

are significantly predicted by prior rule making institutional selection events. Second, 

there is a significant self-reinforcing loop between institutional rule making selection
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events and rule following retention events. While it is commonly expected that insti­

tutional selection events lead to rule following retention events, the feedback effects 

of rule following events on subsequent rule making events are even stronger.

Contrary to the hypothesized co-evolution model as well as most formulations 

of organizational evolution, Table 6.1 shows there are no negative relationships be­

tween technical variation events and institutional rule following events. Thus, rule 

following retention events did not serve to counteract the self-reinforcing loop between 

technical variation and institutional selection.

Dependent Variables
(Yl) (Y2) (Y3)

Variation Selection Retention
Events at t Events at t Events at t

Independent Variables b  (S.E.) 0 (S.E.) 3 (S.E.)
(Yl) Variations Events at (t-1) NA 0.55 (0.10) 0.14 (0.09)
(Y2) Selection Events at (f-1) 0.43 (0.05) NA 0.20 (0.07)
(Y3) Retention Events at (t-1) 0.02 (0.06) 0.42 (0.09) NA
Constant 0.04 (0.08) 0.27 (0.12) 0.46 (0.12)

Table 6 .1. Van de Ven and Garud’s (1992) parameter estimates (standard error in 
parentheses) of the time series regression analysis of the co-evolution model.
NA =  Independent variable not included in the regression equation.

6.1.2 Binary Events Analysis of the Co-Evolution Model

As argued in Chapter 1, in some cases aggregation may diminish the direct relation­

ships among variables. Therefore, the above statistical findings will now be examined 

in terms of binary events instead of monthly events in the period of the development 

of the cochlear implant technology and industry. Since the collection times of events 

are irregular, the time intervals of events are not fixed. Their range is from 1 day to
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270 days. In the following analysis, we chose to treat the time interval of each event 

as fixed and concentrate on the effects of the independent variables from previous pe­

riods over and above the direct contributions of the dependent variable in the given 

period. In developing a process theory of innovation, the changing structural and 

technological conditions, individual behavior, and attitude may cause uncertainty to 

the hypothesized model of the process theory. For time series data of this kind, ap­

plication of standard static regression models will not be appropriate. Therefore, we 

analyze the data with the following dynamic multivariate logistic model (6.1).

If k is the number of categories, responses y t can be described by a vector y't 

=  (yit, • • •, Vqt), with q = k - I components. If only one multi-categorical observation 

is made for each t, then yjt =  1 if category j  has been observed, and yJt =  0 otherwise. 

j  =  1, . . . ,  q. The models are completely determined by the corresponding response 

probabilities fj,t =  (fj,u , . . . ,  nqt), specified by fxt = h(rjt ) =  h(Z't0 t ). A dynamic 

multivariate logistic model is specified by

exp(Tfr)
l + EL.expfe,) <<U)

The response variable y  has three possible outcomes: variation, selection, 

retention, and no occurrence which are labeled with 1 to 4, thus having y  € {1. 

2, 3, 4}. Since no multiple events occur for each observation time t. we introduce 

a multivariate response vector of dummy variables y t =  ( y u . y2t. y^t) to take into 

account the categorical character of yt- Let yu =  1 if the variation event occurred in 

the fth event, y2t =  1 if the selection event occurred in the ith  event, and y3t =  1 if the 

retention event occurred in the tth event. Assuming dummy coding, no occurrence of 

2/i j 2/2, and t/3 leads to y t = (0, 0, 0). We analyzed the cochlear implants data using
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a dynamic multivariate logistic model together with a random walk evolution model:

y t ~  Multinomial(l, /xt ) where n t = (fiu, /z2t, Hzt)-
n  ■ —  6 X p ( r ? j f ) i  —  1 9  3"  i+E'JexpKe)!

z: =

ri't =  (Vu, fyt, Vz1) =

1 2/2,4—! 2/3,4-i 0 0 0 0 0 0

■»t — 0 0 0 1 i 2/3.4—i 0 0 0

0 0 0 0 0 0 1 2/1,4—i 2/2.4—i

=  [  a U $ l t  $2 t &21 0 3 1 0 \ t  Q-Zt 0 o t  0Gt ■

fit = P t- i  + €t, € t~ N (Q ,Q t), fio ~  N{ao, Qo).

The priors for the hyperparameters o0, Qo and Qt are specified by [ao] ~  N (Pa0 -<rl0)- 

Qo =  c<r2/g =  cQt , and [a2] ~  IG(ai,6i), where IG denotes the inverse gamma 

distribution and fXaoi ^aQ! c, ai, and are assumed known. For the binary event 

data of the co-evolution model, the hyperparameter prior specification was defined by 

Pa0 — 0, (t2q =  0.01/g, Oj =  2, 61 =  0.0125. and c — 2. Using this initial information, 

a MCMC sampler independence chain based on 50,000 runs was applied to the data. 

Based on a preliminary sample of 5,000 observations, the acceptance rate of the block 

size 4 is 0.23. Therefore the block size of 4 is chosen based on Roberts, Gelman. and 

Gilk’s (1994) suggestion that the optimal acceptance rate is around 0.25. To monitor 

the performance of the samplers, the autocorrelation curves for the parameters J l ;!60. 

$2,360; $3,360; $4,360; $5,360; and $ 6,360 (the time t  =  360 is the middle of the posterior 

mean sequence for each parameter) based on 50,000 runs are shown in Figure 6.1 (a) 

- (f). The autocorrelation curves are significantly nonzero only out to about lag 150 

for all parameters. This suggests that 50,000 runs is a sufficiently large number to 

obtain accurate estimates of all parameters.
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According to (6.1) the model can be written as

i p(occurrence of variation at t) , a .. , 0  . iao\
loS p(no occurrence)-=  Q“ + PuV2 ji-i +  W->

i P(occurrence of selection at t ) , a  „ , ^
loS p(no occurrence)-=  Q2t +  PstVu-i +  PAtVau-i- (o-J)

i__Pfoccurrence of retention at t) , a . , o . ia w
l0S P(ho occurfencej-=  Q3t +  PstVu-i +  (b-4)

In the above equations (6.2), (6.3), and (6.4), ”no occurrenc” stands for no occurrence 

of variation, selection, and retention events. To be consistent with the co-evolution 

model, the V2,t-u and y3>£_i were not included in the equation (6.2). (6.3).

and (6.4) respectively, to adjust for the effect of its prior event. Several hypothesized 

relationships among variation, selection, and retention events have been proposed by 

Van de Ven and Garud (1992) and presented in the co-evolution model. To test these 

hypotheses, the above equations (6.2), (6.3), and (6.4) can be used to examine the 

hypothesized relationships. In more detail, for example, the odds of variation event iju

occurrence is exp(au+du) times higher with selection event y2,t-i present than with

no selection event present. Thus, if the odds (i.e., the value of expla^-f ^,)) 

is higher than 1, the odds of the variation event occurring at time t increases when 

a selection event occurred at time t - 1; if the odds is below than 1. the odds of the 

variation event occurring at time t  decreases when a selection event occurred at time 

t -  1.

With selection event present the odds, exp{au+0it), of variation event for t = 

1, . . . ,  719, is displayed in Figure 6.2(a). Since all the odds are above one. the odds 

of variation event occurring at time t increases with selection event present at time t
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-1. This result agrees with the co-evolution model that the novel technical variations 

are not exogenous to the model since the odds of novel technical variations increases 

with institutional rule making (selection) events.

With retention event present the odds of variation event occurring with re­

tention event present and the odds of retention event occurring with variation event 

present are displayed in Figure 6.2(b) and 6.2(e), respective!}'. In both figures, all 

the odds are below one. These results support the hypothesized relationships of the 

co-evolution model that the odds of variation event occurring at time t decreases 

with institutional rule following (retention) event present at time t - 1 and the odds 

of institutional rule following (retention) event occurring at time t decreases with 

variation event present at time t - 1. This is not shown in the results (Table 6.1) of 

the time series regression analyses using monthly aggregation events.

Figure 6.2(c) shows the odds of selection event occurring with variation event 

present. Most of the odds are above one, the odds of selection event occurring at 

time t increases with the variation event present at time t - 1. In Figure 6.2(f). 

all the odds of retention event occurring with selection event present are above one. 

This also indicates that the odds of retention event occurring at time t increases 

with the selection event present at time t - 1. These two results are consistent with 

most organizational formulations of the evolutionary model as well as the co-evolution 

model.

Figure 6.2(d) shows the odds of selection event occurring with retention event 

present. Contrary to the hypothesized co-evolution model, Figure 6.2(d) does not 

show that the odds of institutional rule making (selection) event occurring at time t 

increases with institutional rule following (retention) event present at time t - 1.
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Figure 6.2. Odds of variation, selection, and retention events.
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6.2 Adaptive Learning Model

6.2.1 Adaptive Processes of Organizational Learning during 

the Development of TAP

A central problem in managing and investing innovations is determining whether and 

how to continue a developmental effort in the absence of concrete performance infor­

mation. Adaptive processes of organizational learning have recently gained increasing 

prominence to address this kind of problem. This adaptive learning model assumes 

organizations to be target-oriented, routine-based systems which respond to experi­

ence by repeating behaviors that have been found to be successful and avoiding those 

which have not. This basic model has proven quite robust in situations where prefer­

ences are clear, alternative courses of action are specified in advance, and outcomes 

are unambiguous (March, 1972). But very few studies have examined the empirical 

validity of this model in more ambiguous organizational settings. Van de Ven and 

Polley (1992) examined this process of adaptive learning during the development of a 

biomedical innovation and tested the model of adaptive learning in a more ambiguous 

real-world organizational setting, such as innovation development.

The model of adaptive learning that Van de Ven and Polley (1992) examined 

in their study of innovation development focused on the relationship between actions 

and outcomes. Following March (1972), Van de Ven and Polley (1992) assumed 

that people are adaptively rational. To develop an innovation, entrepreneurs initially 

choose a course of action (for example A) with the intention of achieving a positive 

outcome. If a positive outcome is experienced following action course A they will 

continue with A, and if a negative outcome is experienced they will change or shift 

to a new course of action (for example B). Subsequently, if positive outcomes are 

experienced with action course B they will continue with B, but if negative outcomes
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are experienced they will change again to another course of action (for example C). 

which may appear as the next best alternative course at that time. To model this 

process, Van de Ven and Polley (1992) observed and categorized the actions that 

entrepreneurs take as either continuing or changing their prior course of action, and 

also observed if entrepreneurs experienced positive or negative outcomes following 

their prior actions. When outcome responses follow prior actions, entrepreneurs are 

disposed to adapt to four possible situations which are described in Table 6.2:

If the action 
at time f-1 was:

and the outcome 
of that action was:

then the next action 
at time t will be:

1. continue prior action positive continue prior action again
2. continue prior action negative change prior action
3. change prior action positive continue prior action
4. change prior action negative change prior action again

Table 6.2. Process of learning.

A simple direct effect of prior outcomes on subsequent actions, as suggested by 

the four situations in the Table 6.2, may not indicate that learning occurred because 

the outcomes that trigger subsequent actions may not have been caused by the prior 

actions taken. Thus, Van de Ven and Polley (1992) proposed that adaptive learning 

is evident when prior actions and outcomes interact to explain subsequent action. 

This leads to the hypothesis on adaptive learning:

Hypothesis: Adaptive learning is  evident when prior actions and outcomes at

time t — 1 have a positive interaction ef f ect  on continuing the course o f  action at 

t.

A test of this hypothesis in the learning model is based on a longitudinal 

study of the development of an innovation, which was undertaken as a joint venture
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by three corporations to create a business by developing a new medical technology- 

called therapeutic apheresis. This real-time field study of the therapeutic apheresis 

program (TAP) was conducted from October 1983 to July 1988. Data collection 

involved: attendance and recording of proceedings at bimonthly meetings of the TAP 

strategic business unit (SBU) committee and semiannual administrative reviews of 

TAP; semiannual interviews with TAP SBU members and questionnaire surveys of all 

key TAP personnel: annual interviews with top managers of the co-venturing firms: as 

well as information obtained from company records and industry- trade publications. 

Over the five years of real-time tracking, 258 events were recorded in therapeutic 

apheresis development. These events are the units of observation for testing the 

learning model.

A time series analysis of the events was undertaken to estimate the relation­

ships among the variables in the hypothesized learning model. To apply regular time 

series analysis methods, it was necessary to aggregate the event sequence data into 

fixed temporal intervals. A monthly interval was chosen for regression analysis of the 

adaptive learning model (Van de Ven and Polley. 1992). Two temporal periods that 

have been observed: (1) a startup expansion period from November 1983 to Septem­

ber 1986 (186 events) when the TAP innovation entered the market, followed by (2) 

an ending contraction period from October 1986 to July 1988 (72 events) when TAP's 

development was terminated. Very different patterns of correlations were found (Van 

de Ven and Polley, 1992) between the monthly time series of actions and outcomes 

during the expansion and contraction periods. Given these differences. Yan de Ven 

and Polley (1992) examined the hypothesized adaptive learning model separately in 

each period.

The test results in Van de YTen and Polley’s (1992) study show little support for 

the hypothesized learning model during the expansion period but are consistent with 

hypothesized learning model during the contraction period. During the expansion

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER 6. BINARY EVENTS ANALYSIS OF TWO MIRP EXAMPLES 88

period, negative outcomes lead directly to continuing with the prior course of action 

which do not support the four situations described in Table 6.2. Also, the absence 

of an interaction effect of prior actions and outcomes on subsequent actions also 

indicates no learning occured. During the contraction period, adaptive learning is 

evident by the fact that subsequent actions are explained by a significant positive 

interaction effect of prior actions and outcomes. The significant positive relationship 

between continuing prior actions and subsequent outcomes indicates an increase in 

the propensity of entrepreneurs to select the course of action that was rewarded. This 

result supports the hypothesis on adaptive learning. Prior outcomes alone have no 

effect on subsequent actions which also do not support the four situations described 

in Table 6.2.

6.2.2 Binary Events Analysis of Learning Model

The above statistical findings will now be examined in terms of binary events instead 

of monthly events in each period of the development of TAP. Since the collection 

times of events are irregular, the time intervals of events are not fixed. In the follow­

ing analysis, we again choose to treat the time intervals of each event as fixed and 

concentrate on the relationships between actions and outcomes for each period. We 

analyze the data with a dynamic multivariate logistic model (6.1) which is constructed 

as follows.

The response variable y  has three possible outcomes: continue actions, change 

actions, and no actions which are labeled with 1 to 3. thus having y  € {1. 2. 3}. 

We introduce a multivariate response vector of dummy variables y t = ( y u . y-,t ) to 

take into account the categorical character of y t■ Let yxt =  1 if the continue action 

occurred in the tth event, and y2t =  1 if the change action occurred in the ttli event. 

Assuming dummy coding, no occurrence of yx, and t/2 leads to y t =  (0. 0). There are
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two binary covariates, namely, outcome positive (A'!), and outcome negative (A*2). 

We analyzed TAP data by a dynamic multivariate logistic model together with a 

random walk evolution model for the coefficients:

The priors for the hyperparameters do, Qo and Qt are specified by [do] ~  N (Vaa-O-lj- 

Qo =  C£j2/ 5 =  cQt, and [a2] ~  IG(ai, 61), where IG denotes the inverse gamma 

distribution and fiao, <x2q, c , ai, and b\ are assumed known. For the binary event 

data of the co-evolution model, the hyperparameter prior specification was defined 

by fJ’ao = 0-̂5; &ao = 0*02/ 5, o-i =  2, 61 =  0.025. and c = 2. Using these initial 

assumption, a MCMC sampler independence chain based on 50,000 runs was applied 

to the data. Based on a preliminary sample of 5,000 observations, the acceptance rate 

of the block size 8 is 0.28. Therefore the block size of 8 is chosen based on Roberts. 

Gelman, and Gilk’s (1994) suggestion that the optimal acceptance rate is around

0.25. To monitor the performance of the samplers, the autocorrelation curves for the 

parameters #1,129, 82,1291 and # 3,129 (the time t = 129 is the middle of the posterior 

mean sequence from each parameter estimates) based on 50,000 runs are shown in 

Figure 6.3 (a) - (c). The autocorrelation curves are significantly nonzero only out to 

about lag 200 for all parameters. This suggests that 50,000 runs is a sufficiently large 

number to obtain accurate estimates of all parameters.

y t ~  Multinomial(l, Ht) where fit =  (^u , fi2t),

^  i+E^iexpfo,,)’

v't = {nu, m t) = z'tPt
1 3*1,i—l Vl,t- 2  x ^1,£-1 0 0
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Figure 6.3. Empirical autocorrelation curve of the parameters Qx. So. and # 5.
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According to (6.1) the model can be written as

, p(occurrence of continue actions) _ , a _ , a
loS---------- p(ho occurrence)---------- =  a u +  P u ^u -i  +  fh tyu - 2  x
, p(occurrence of change actions) . , 0

§ p(no occurrence) — <*2t +  P3t£2.t-i-

In the study of the adaptive learning model, Van de Ven and Polley (1992) focus on 

the relationship between actions and outcomes as well as the hypothesis on adaptive 

learning. To test these relationship and hypothesis, the above equations can be used 

to examine the hypothesized relationships. Figure 6.4(a) shows the odds of continue 

actions occurring with outcome positive present. All the odds are below one. the 

odds of continue actions occurring at time t decreases with outcome positive present 

at time t - 1. This result is same as the result of the time series regression analyses 

using monthly aggregation eventsand don’t support the four situations of process of 

learning described in Table 6.2 for expansion and contraction periods.

Figure 6.4(b) shows the odds of continue actions occurred at time t. with in­

teraction effect continue actions at time t - 2 and outcome positive at time t - 1 

present. This result is similar to the result of the time series regression analyses using 

monthly aggregation events. During the expansion period (event 1 to 186). the values 

of odds of continue actions in Figure 6.4(b) show little support for the hypothesized 

learning model. During the contraction period (event 187 to 258) adaptive learning 

is evident by the higher value of odds that subsequent continue actions are explained 

by a positive interaction effect of prior continue actions and outcome positive.

In Figure 6.4(c), the odds of change actions occurred at time t increase with 

outcome negative present at time t - 1 since all the odds are above one. This result 

differs from the result of the time series regression analyses using monthly aggregation 

events, but support the four situations of process of learning described in Table 6.2 

for expansion and contraction periods.
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Figure 6.4. Odds of continue actions and change actions events.
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6.3 Discussion

The results of binary events analyses of the co-evolution model and adaptive learn­

ing model refine application of evolutionary theory for understanding the techno­

logical and institutional development of cochlear implants and of adaptive processes 

of organizational learning during the development of a technological innovation of 

therapeutic apheresis in several important features.

1. There is dynamic nature in developing a process theory of innovation. The 

graphs in Figure 6.2 and 6.4 suggest that the relative occurrence is not fixed over 

time and the changing situations such as technological conditions, individual 

behavior, and attitude may cause uncertainty to the hypothesized model of the 

process theory.

2. Aggregation may diminish the direct relationships among variables. The re­

sults in Figure 6.2(b) and 6.2(e) support the hypothesized relationships of the 

co-evolution model which are not revealed in the results in Table 6.1 of the 

time series regression analyses using monthly aggregate data. Also the result 

in Figure 6.4(c) differs from the result of the time series regression analyses 

using monthly aggregation events, but support the four situations of process of 

learning described in Table 6.2 for expansion and contraction periods.

3. Different patterns of parameter effects are reflected in the binary events anal­

ysis. One can easily detect different patterns of relative occurrence with a 

specified event present by observing the plots in Figure 6.2 and Figure 6.4. 

These empirical findings of different patterns provide an enhanced knowledge 

for understanding the technological and institutional development of cochlear 

implants and different learning patterns of therapeutic apheresis in each period 

of developing an innovation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Chapter 7 

Conclusions and Future Research

This thesis has investigated and applied Markov chain Monte Carlo samplers 

for dynamic multivariate binary time series. This approach extends the Gibbs sam­

pling framework for dynamic generalized linear models by introducing more gen­

eral Markov chain methods. This thesis outlines several basic Markov chain Monte 

Carlo methods, including Metropolis-Hastings algorithms, adaptive rejection algo­

rithms and other variations. From the results on a binary time series example, these 

algorithms have better performance than the Gibbs sampler. In addition, the basic 

formulation of the Gibbs sampler is restricted to problems where the complete con­

ditional part of the posterior distribution are available. The generality of MCMC 

methods remove this restriction. As a result, Markov chain Monte Carlo methods 

seem to provide a more efficient tool for analyzing multivariate dynamic generalized 

linear models.

A modified ARS algorithm is derived in this thesis for efficiently sampling 

from log-concave distributions. In contrast to the ARS algorithm, this modified ARS 

algorithm only needs to start at one point instead of two points in ARS algorithm. 

Furthermore, if the target distribution is from an exponential family, the calculation 

of the rejection envelope and squeezing functions required in ARS algorithm can 

be omitted. Thus, this modified ARS algorithm within the Gibbs sampler is more 

efficient and simple than the ARS algorithm. The results on a binary time series 

example show that the rejection rate reduction obtained using this modified ARS 

algorithm within the Gibbs sampler is quite significant.

We have also applied Markov chain Monte Carlo samplers to two binary time

94
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series which were previously analyzed by standard time series analysis methods on 

monthly data which were obtained from aggregating the binary events. The results 

show that the direct relationships among variables in binary event series are more 

likely to be detected using the raw event data than in monthly event series because 

the aggregation may diminish the direct relationships among variables. This work 

may provide a fundamental statistical tool in analyzing multivariate binary time 

series data that is commonly observed in the social sciences and is often recognized 

as having a dynamic nature, especially in developing a process theory of innovation.

Areas for future work include:

1. To incorporate several algorithms to form hybrid algorithms. Tierney (1994) 

outlines some of the basic Markov chain algorithms that are available and de­

scribes several methods and strategies in which the algorithms can be combined 

to form hybrid algorithms. This can be used to guide the construction of more 

efficient algorithms.

2. To study the effects of varying the parameters in MCMC samplers. More work 

is clearly needed to understand the effects of varying the parameters in the 

M-H and hybrid algorithms and to determine good default values for these 

parameters. For example, it would be nice to adjust the parameters of the 

proposal distribution in the M-H algorithm so as to make moves that are as 

large as possible while maintaining a reasonable acceptance rate.

3. To extend the current work to the case when the observations are not equally 

spaced in time. In the literature, little material on statistical inference or empir­

ical learning is concerned with the analysis of unequally spaced data. To adjust 

the time factor into the hypothesized model is clearly a new area needing to be 

explored.
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